• Title/Summary/Keyword: low cost carrier

Search Result 159, Processing Time 0.029 seconds

Two Kinds of Hybrid Localization System Design Techniques Based on LED IT (LED IT 기반의 두 가지 하이브리드 측위 시스템 설계 기법)

  • Lee, Yong Up;Kang, Yeongsik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.2
    • /
    • pp.155-164
    • /
    • 2013
  • Two design techniques for more accurate and more convenient hybrid positioning system with visible light communication (VLC) and ad-hoc wireless network infrastructure are proposed, in order to overcome the problems of high estimation error, high cost, and limited service range of the conventional positioning techniques. First method is based on a non-carrier VLC based hybrid positioning technique for applications involving of low data rate optical sensing and narrow-range visible light reception from transmitter, and long-range positioning. The second method uses a 4 MHz carrier VLC-based hybrid positioning technique for a high data rate optical sensing and wide-range visible light receiving from transmitter, and mid-range positioning applications. In indoor environments with obstacles where there are long-range 7731.4cm and mid-range 2368cm distances between an observer and a target respectively, the hybrid positioning developed with two design techniques are tested, and the proposed system is verified and analyzed in this paper.

Simple Route to High-performance and Solution-processed ZnO Thin Film Transistors Using Alkali Metal Doping

  • Kim, Yeon-Sang;Park, Si-Yun;Kim, Gyeong-Jun;Im, Geon-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.187-187
    • /
    • 2012
  • Solution-processed metal-alloy oxides such as indium zinc oxide (IZO), indium gallium zinc oxide (IGZO) has been extensively researched due to their high electron mobility, environmental stability, optical transparency, and solution-processibility. In spite of their excellent material properties, however, there remains a challenging problem for utilizing IZO or IGZO in electronic devices: the supply shortage of indium (In). The cost of indium is high, what is more, indium is becoming more expensive and scarce and thus strategically important. Therefore, developing an alternative route to improve carrier mobility of solution-processable ZnO is critical and essential. Here, we introduce a simple route to achieve high-performance and low-temperature solution-processed ZnO thin film transistors (TFTs) by employing alkali-metal doping such as Li, Na, K or Rb. Li-doped ZnO TFTs exhibited excellent device performance with a field-effect mobility of $7.3cm^2{\cdot}V-1{\cdot}s-1$ and an on/off current ratio of more than 107. Also, in case of higher drain voltage operation (VD=60V), the field effect mobility increased up to $11.45cm^2{\cdot}V-1{\cdot}s-1$. These all alkali metal doped ZnO TFTs were fabricated at maximum process temperature as low as $300^{\circ}C$. Moreover, low-voltage operating ZnO TFTs was fabricated with the ion gel gate dielectrics. The ultra high capacitance of the ion gel gate dielectrics allowed high on-current operation at low voltage. These devices also showed excellent operational stability.

  • PDF

Transfer of Heat-treated ZnO Thin-film Plastic Substrates for Transparent and Flexible Thin-film Transistors (투명 유연 박막 트랜지스터의 구현을 위한 열처리된 산화아연 박막의 전사방법 개발)

  • Kwon, Soon Yeol;Jung, Dong Geon;Choi, Young Chan;Lee, Jae Yong;Kong, Seong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.182-185
    • /
    • 2018
  • Zinc oxide (ZnO) thin films have the advantages of growing at a low temperature and obtaining high charge mobility (carrier mobility) [1]. Furthermore, the zinc oxide thin film can be used to control application resistance depending on its oxygen content. ZnO has the desired physical properties, a transparent nature, with a flexible display that makes it ideal for use as a thin-film transistor. Though these transparent flexible thin-film transistors can be manufactured in various manners, manufacturing large-area transistors using a solution process is easier owing to the low cost and flexible substrate. The advantage of being able to process at low temperatures has been attracting attention as a preferred method. However, in the case of a thin-film transistor fabricated through a solution process, it is reported that charge mobility is lower. To improve upon this, a method of improving the crystallinity through heat treatment and increasing electron mobility has been reported. However, as the heat treatment temperature is relatively high at $500^{\circ}C$, an application where a flexible substrate is absent would be more suitable.

Optical and Magnetic Properties of Copper Doped Zinc Oxide Nanofilms

  • Zhao, Shifeng;Bai, Yulong;Chen, Jieyu;Bai, Alima;Gao, Wei
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.68-71
    • /
    • 2014
  • Copper doped Zinc Oxide nanofilms were prepared using a simple and low cost wet chemical method. The microstructures, phase structure, Raman shift and optical absorption spectrum as well as magnetization were investigated for the nanofilms. Room temperature ferromagnetism has been observed for the nanofilms. Structural analyses indicated that the films possess wurtzite structure and there are no segregated clusters of impurity phase appreciating. The results show that the ferromagnetism in Copper doped Zinc Oxide nanofilms is driven either by a carrier or defect-mediated mechanism. The present work provides an evidence for the origin of ferromagnetism on Copper doped Zinc Oxide nanofilms.

VLS growth of ZrO2 nanowhiskers using CVD method

  • Baek, Min-Gi;Park, Si-Jeong;Jeong, Jin-Hwan;Choe, Du-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.149-149
    • /
    • 2016
  • Ceramic is widely known material due to its outstanding mechanical property. Besides, Zirconia(ZrO2) has a low thermal conductivity so it is advantage in a heat insulation. Because of these superior properties, ZrO2 is attracted to many fields using ultra high temperature for example vehicle engines, aerospace industry, turbine, nuclear system and so on. However brittle fracture is a disadvantage of the ZrO2. In order to overcome this problem, we can make the ceramic materials to the forms of ceramic nanoparticles, ceramic nanowhiskers and these forms can be used to an agent of composite materials. In this work, we selected Au catalyzed Vapor-Liquid-Solid mechanism to synthesize ZrO2 nanowhiskers. The ZrO2 whiskers are grown through Hot-wall Chemical Vapor Deposition(Hot wall CVD) using ZrCl4 as a powder source and Au film as a catalyst. This Hot wall CVD method is known to comparatively cost effective. The synthesis condition is a temperature of $1100^{\circ}C$, a pressure of 760torr(1atm) and carrier gas(Ar) flow of 500sccm. To observe the morphology of ZrO2 scanning electron microscopy is used and to identify the crystal structure x-ray diffraction is used.

  • PDF

Effect of Paclitaxel-loaded Nanoparticles on the Viability of Human Hepatocellular Carcinoma HepG2 Cells

  • Hou, Zhi-Hong;Zhao, Wen-Cui;Zhang, Qi;Zheng, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.1725-1728
    • /
    • 2015
  • Objective: To explore effects of paclitaxel-loaded poly lactic-co-glycolic acid (PLGA) particles on the viability of human hepatocellular carcinoma (HCC) HepG2 cells. Materials and Methods: The viability of HepG2 cells was assessed using MTT under different concentrations of prepared paclitaxel-loaded particles and paclitaxel (6.25, 12.5, 25, 50, and 100 mg/L), and apoptosis was analyzed using Hochest33342/Annexin V-FITC/PI combined with an IN Cell Analyzer 2000. Results: Paxlitaxel-loaded nanoparticles were characterized by narrow particle size distribution (158.6 nm average particle size). The survival rate of HepG2 cells exposed to paclitaxel-loaded PLGA particles decreased with the increase of concentration and time period (P<0.01 or P<0.05), the dose- and time-dependence indicating sustained release (P<0.05). Moreover, apoptosis of HepG2 cells was induced, again with an obvious dose- and time-effect relationship (P<0.05). Conclusions: Paclitaxel-loaded PLGA particles can inhibit the proliferation and induce the apoptosis of HCC HepG2 cells. This new-type of paclitaxel carrier body is easily made and has low cost, good nanoparticle characterization and sustained release. Hence, paclitaxel-loaded PLGA particles deserve to be widely popularized in the clinic.

Forecasting and Analysis of Air Meteorological Service Charge using ARIMA-Intervention Time Series Model (ARIMA-개입모델을 이용한 항공기상정보 사용료 징수액 추정 및 적정성 연구)

  • Kim, Kwang-Ok;Park, Sung-Sik
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.3
    • /
    • pp.9-22
    • /
    • 2018
  • Korea meteorological administration(KMA) has started to levy air meteorological service charge on both national and foreign carriers since 2005. The charge has grown on 2010 and 2014 twice. However, KMA has still kept asking airlines to agree with another increase in the charge due to the low cost of goods recovery ratio of 7%. The air meteorological charge has changed from 2,210 KRW at the beginning to 11,400 KRW as of June 2018. According to ARIMA intervention time series analysis, it was proven national carriers would make a payment of 831 million KRW 2018 and 1,024 million KRW 2019, showing 186.2% and 123.2% increase compared to last year respectively. The total amount of charge for both national LCC and foreign airlines was aggregated up to 1,952 million KRW 2019, 227% bigger than the charge paid at 2017. Considering the 50% increase of consumer price index last decade, the increased charge would impair the global competitiveness of national carriers. It could be suggested that current air meteorological charge scheme be improved to apply overseas trend and for national carriers to have a competitive advantage in global aviation market.

Immobilization of Thermomyces lanuginosus Xylanase on Aluminum Hydroxide Particles Through Adsorption: Characterization of Immobilized Enzyme

  • Jiang, Ying;Wu, Yue;Li, Huixin
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2016-2023
    • /
    • 2015
  • Xylanase plays important roles in a broad range of industrial production as a biocatalyst, and its applications commonly require immobilization on supports to enhance its stability. Aluminum hydroxide, a carrier material with high surface area, has the advantages of simple and low-cost preparation and resistance to biodegradation, and can be potentially used as a proper support for xylanase immobilization. In this work, xylanase from Thermomyces lanuginosus was immobilized on two types of aluminum hydroxide particles (gibbsite and amorphous Al(OH)3) through adsorption, and the properties of the adsorbed enzymes were studied. Both particles had considerable adsorptive capacity and affinity for xylanase. Xylanase retained 75% and 64% of the original catalytic activities after adsorption to gibbsite and amorphous Al(OH)3. Both the adsorptions improved pH and thermal stability, lowered activation energy, and extended lifespan of the immobilized enzyme, as compared with the free enzyme. Xylanase adsorbed on gibbsite and amorphous Al(OH)3 retained 71% and 64% of its initial activity, respectively, after being recycled five times. These results indicated that aluminum hydroxides served as good supports for xylanase immobilization. Therefore, the adsorption of xylanase on aluminum hydroxide particles has promising potential for practical production.

Analysis of Grain Boundary Effects in Poly-Si Wafer for the Fabrication of Low Cost and High Efficiency Solar Cells (저가 고효율 태양전지 제작을 위한 다결정 실리콘 웨이퍼 결정입계 영향 분석)

  • Lee, S.E.;Lim, D.G.;Kim, H.W.;Kim, S.S.;Yi, J.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1361-1363
    • /
    • 1998
  • Poly-Si grain boundaries act as potential barriers as well as recombination centers for the photo-generated carriers in solar cells. Thereby, grain boundaries of poly-Si are considered as a major source of the poly-Si cell efficiency was reduced This paper investigated grain boundary effect of poly-Si wafer prior to the solar cell fabrication. By comparing I-V characteristics inner grain, on and across the grain boundary, we were able to detect grain potentials. To reduce grain boundary effect we carried out pretreatment, $POCl_3$ gettering, and examined carrier lifetime. This paper focuses on resistivity variation effect due to grain boundary of poly-Si. The resistivity of the inner grain was $2.2{\Omega}-cm$, on the grain boundary$2.3{\Omega}-cm$, across the grain boundary $2.6{\Omega}-cm$. A measured resistivity varied depending on how many grains were included inside the four point probes. The resistivity increased as the number of grain boundaries increased. Our result can contribute to achieve high conversion efficiency of poly-Si solar cell by overcoming the grain boundary influence.

  • PDF

Flicker Prevention in Visible Light Communication Using Three-Level Byte-Inversion Transmission (가시광통신에서 3-레벨 바이트반전 전송을 이용한 플리커 방지)

  • Lee, Seong-Ho
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.316-323
    • /
    • 2018
  • In this paper, we newly introduce the three-level byte-inversion transmission method for preventing LED flicker in visible light communication (VLC). The VLC transmitter sequentially sends the original signal and the inverted signal in byte units using a three-level LED modulator. The average optical power of the LED is kept constant during data transmission, thus flicker-free. In the VLC receiver, the original data is easily recovered using a simple comparator. This structure is very simple because additional clock or carrier is not required for flicker prevention. The developed flicker prevention scheme could be very useful for constructing the flicker-free indoor VLC system in low cost.