Browse > Article
http://dx.doi.org/10.4283/JMAG.2014.19.1.068

Optical and Magnetic Properties of Copper Doped Zinc Oxide Nanofilms  

Zhao, Shifeng (School of Physical Science and Technology, Inner Mongolia University, Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University)
Bai, Yulong (School of Physical Science and Technology, Inner Mongolia University, Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University)
Chen, Jieyu (School of Physical Science and Technology, Inner Mongolia University, Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University)
Bai, Alima (School of Physical Science and Technology, Inner Mongolia University, Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University)
Gao, Wei (School of Physical Science and Technology, Inner Mongolia University, Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University)
Publication Information
Abstract
Copper doped Zinc Oxide nanofilms were prepared using a simple and low cost wet chemical method. The microstructures, phase structure, Raman shift and optical absorption spectrum as well as magnetization were investigated for the nanofilms. Room temperature ferromagnetism has been observed for the nanofilms. Structural analyses indicated that the films possess wurtzite structure and there are no segregated clusters of impurity phase appreciating. The results show that the ferromagnetism in Copper doped Zinc Oxide nanofilms is driven either by a carrier or defect-mediated mechanism. The present work provides an evidence for the origin of ferromagnetism on Copper doped Zinc Oxide nanofilms.
Keywords
magnetic properties; optical properties; ZnO; nanofilms;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. S. Hsu, J. C. A. Huang, S. F. Chen, and C. P. Liu, Appl. Phys. Lett. 90, 102506 (2007).   DOI   ScienceOn
2 S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. V. Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).   DOI   ScienceOn
3 D. D. Awschalom and M. E. Flatte, Nature Physics 3, 153 (2007).   DOI
4 T. Dielt, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).   DOI   ScienceOn
5 J. J. Wu, S. C. Liu, and M. H. Yan: Appl. Phys. Lett. 85, 1027 (2004).   DOI   ScienceOn
6 C. L. Tsai, Y. J. Lin, J. H. Chen, H. C. Chang, Y. H. Chen, L. Horng, and Y. T. Shih, Solid State Commun. 152, 488 (2012).   DOI   ScienceOn
7 S. Lardjane, G. Merad, N. Fenineche, A. Billard, and H. I. Faraoun, J. Alloys Compd. 551, 306 (2013).   DOI   ScienceOn
8 S. P. Nanavati, V. Sundararajan, S. Mahamuni, S. V. Ghaisas, and V. Kumar, Phys. Rev. B 86, 205320 (2012).   DOI
9 A. Wojcik, K. Kopalko, M. Godlewski, E. Guziewicz, R. Jakie a, R. Minikayev, and W. Paszkowicz, Appl. Phys. Lett. 89, 051907 (2006).   DOI   ScienceOn
10 N. Spaldin, Phys. Rev. B 69, 125201 (2004).   DOI   ScienceOn
11 T. Fukumura, Z. Jin, A. Ohmoto, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett. 78, 958 (2001).   DOI   ScienceOn
12 M. Tay, Y. Wu, G. C. Han, T. W. Chong, Y. K. Zheng, S. J. Wang, Y. Chen, and X. Pan, J. Appl. Phys. 100, 063910 (2006).   DOI   ScienceOn
13 K. R. Kittilstved and D. R. Gamelin, J. Am. Chem. Soc. 127, 5292 (2005).   DOI   ScienceOn
14 O. Mounkachi, A. Benyoussef, A. E. Kenz, E. H. Saidi, and E. K. Hill, J. Appl. Phys. 106, 093905 (2009).   DOI   ScienceOn
15 B. Panigrahy, M. Aslam, and D. Bahadur, Appl. Phys. Lett. 98, 183109 (2011).   DOI   ScienceOn
16 C. L. Tsai, Y. J. Lin, J. H. Chen, H. C. Chang, Y. H. Chen, L. Horng, and Y. T. Shih, Solid State Commun. 152m, 488 (2012).
17 J. J. Wu and S. C. Liu, J. Phys. Chem. B 106, 9546 (2002).   DOI   ScienceOn
18 S. Karamat, R. S. Rawat, T. L. Tan, P. Lee , S. V. Springham, Anis-ur-Rehman, R. Chen, and H. D. Sun, J. Supercond Nov Magn. 26, 187 (2013).   DOI
19 C. Sudakar, J. S. Thakur, G. Lawes, R. Naik, and V. M. Naik, Phys. Rev B 75, 054423 (2007).   DOI   ScienceOn
20 M. Purica, E. Budianu, E. Rusu, M. Danila, and R. Gavrila, Thin Solid Films 403, 485 (2002).
21 H. Q. Yan, R. R. He, J. Justin, L. Matthew, S. Richard, and J. P. D. Yang, J. Am. Chem. Soc. 125, 4728 (2003).   DOI   ScienceOn
22 M. Ferhat, A. Zaoui, and R. Ahuja, Appl. Phys. Lett. 94, 142502 (2009).   DOI
23 A. Umar, and Y. B. Hahn, Appl. Phys. Lett. 88, 173120 (2006).   DOI   ScienceOn
24 A. K. Pradhan, K. Zhang, G. B. Loutts, U. N. Roy, Y. Cui, and A. Burger, J. Phys. Condens. Matter 16, 7123 (2004).   DOI   ScienceOn
25 D. L. Hou, X. J. Ye, H. J. Meng, H. J. Zhou, X. L. Li, C. M. Zhen, and G. D. Tang, Appl. Phys. Lett. 90, 142502 (2007).   DOI   ScienceOn
26 Y. H. Lin, M. Ying, M. Li, X. Wang, and C. W. Nan, Appl. Phys. Lett. 90, 222110 (2007).   DOI   ScienceOn
27 C. L. Tsai, Y. J. Lin, C. J. Liu, L. Horng, Y. T. Shih, M. S. Wang, C. S. Huang, C. S. Jhang, Y. H. Chen, and H. C. Chang, Appl. Surf. Sci. 255, 8643 (2009).   DOI   ScienceOn
28 L. H. Ye, A. J. Freeman, and B. Delley, Phys. Rev. B 73, 033203 (2006).
29 X. F. Wang, J. B. Xu, W. Y. Cheung, J. An, and N. Ke, Appl. Phys. Lett. 90, 212502 (2007).   DOI   ScienceOn
30 S. F. Zhao, C. H. Yao, Q. Lu, F. Q. Song, J. G. Wan, and G. H. Wang, Transactions of Nonferrous Metals Society of China 19, 1450 (2009).   DOI   ScienceOn