• 제목/요약/키워드: low cement concrete

검색결과 628건 처리시간 0.023초

혼합형 저발열 시멘트를 사용한 콘크리트의 초유동성 및 내해수성에 관한 연구 (A Study on the Resistance to Sea Water and High Flowing Properties of Concrete Using Blended Low Heat Cement)

  • 송용순;노재호;강석화
    • 콘크리트학회지
    • /
    • 제10권6호
    • /
    • pp.281-289
    • /
    • 1998
  • 본 연구는 해양 매스 콘크리트 구조물인 서해대교 사장교 주탑기초(L${\times}$D${\times}$H : 66${\times}$28${\times}$32~38.2)에 콘크리트 타설시 다짐작업을 생략할 수 있고, 수화열에 의한 온도균열 발생을 제어할 수 있는 콘크리트의 사용에 대하여 적극적으로 검토한 것으로서 혼합형 저발열 시멘트를 사용한 초유동 콘크리트와 현장에서 사용중인 5종 시멘트를 사용한 25-240-15 보통 콘크리트를 주탑 기초 일부분에 적용하여 유동성, 강도발현 성능, 재료분리 저항성, 수화열, 내해수성 등을 비교 평가한 것이다. 그 결과, 저발열시멘트를 사용한 초유동 콘크리트는 별도의 다짐 작업없이도 우수한 작업성과 자기 충전성, 재료분리 저항성을 나타냈으며, 5종시멘트를 사용한 25-240-15보통 콘크리트보다 단위시멘트량이 54kg/$m^2$ 정도 증가했음에도 불구하고 오히려 수화열은 $10^{\circ}C$이상 저감되어 온도균열 제어에 매우 효과적임을 확인할 수 잇었다. 또한 부재에서 채취한 코아의 압축강도는 5종시멘트를 사용한 25-240-15 보통 콘크리트와 동등한 강도 발현율을 나타내었다. 특히 해수중 염소이온의 침투에 대한 저항성을 평가하기 위해 실시한 촉진 염소이온침투 시험결과 통과전하량이 5종 보통 콘크리트보다 5배정도 낮게 나타났으며, 기타 화학물질에 대한 저항성은 비슷한 경향을 보였다. 따라서 저발열 시멘트를 사용한 초유동 콘크리트는 유동성개선에 의한 다짐 작업의 생략 효과와 더불어 수화열 저감 효과에 따른 온도균열제어 및 공기단축 등으로 주탑기초의 콘크리트에 매우 유리한 시멘트라고 판단되었다.

저열 포틀랜드 시멘트 콘크리트의 고강도 영역에서의 강도발현 특성 (Strength Development of Low Heat Portland Cement Concrete in High Strength Range)

  • 하재담;엄태선;이종열;권영호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.353-356
    • /
    • 2005
  • Strength development of low heat portland cement(Type IV) concrete in high strength range is tested. In this study strength development according to water-binder ratio, strength development according to age, effect of fly ash and super plasticizer are tested. This study tests effect of low heat portland cement in high strength range concrete and provide guide line concrete mix design for later study and/or construction.

  • PDF

물-시멘트비 및 시멘트 종류가 해양콘크리트의 내염해성에 미치는 영향 (Effect of W/C and the Kinds of Cement on the Chloride Invasion Resistance of the Offshore Concrete)

  • 신홍철;유재강;박상준;김영진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.165-168
    • /
    • 2005
  • This paper investigated the effect of W/C and the kinds of cement on the chloride invasion resistance of the offshore concrete. W/C set up 0.30, 0.35, 0.40 and The kinds of cement were used four(ordinary portland cement, ground granulated blast-furnace slag cement, belite cement, low heat portland cement). For the electrical migration test, NT BUILD 492's method was used to estimate the migration coefficient of chloride ion. As a result, the migration coefficients of chloride ion of concrete according to w/c were shown reducing with the w/c increasing, and according to kinds of cement were shown discrepancy in chloride invasion resistance. Especially blast-furnace slag cement was most low it. In the each cement, the compressive strength was shown related to the migration coefficient.

  • PDF

저열 포틀랜드 시멘트 적용을 통한 SRC 교각 온도균열 제어 (Thermal Crack Control of SRC Pier Using Low-Heat Portland Cement)

  • 김태홍;하재담;유재상;이종열
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.297-302
    • /
    • 2001
  • SRC pier at KTE 6-1 construction area is a very important structure. Precise control of quality is needed. This pier has 3.50m$\times$3.73m section and 38.20m length. So this structure must be treated as mass concrete and thermal crack caused by hydration heat should be controled. In this project belite cement concrete is used to control the thermal crack. As a result of adapting belite cement concrete perfect control is achieved. Finally, hydration heat FEM analysis of horizontal element is executed for Ordinary Portland Cement concrete and belite cement concrete. In comparison of two results, it is confirmed that using low heat portland cement concrete is necessary.

  • PDF

초기동해를 입은 콘크리트의 압축강도에 미치는 영향인자에 관한 연구 (A Study of Influencing Factors on Compressive Strength of Concrete Frozen at Early Ages)

  • 배수원;김진근;권기주;정원섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.527-532
    • /
    • 2003
  • When fresh concrete is exposed to sufficiently low temperature, the free water in the concrete is cooled below its freezing point and transforms into ice, which causes decrease in compressive strength of concrete. Of the many influencing factors on the loss of compressive strength, the age of concrete at the beginning of freezing, water-cement ratio, and cement-type are significantly important. The objective of this study is to examine how the these factors affect the compressive strength of concrete frozen at early ages. The results from the tests showed that as age at the beginning of freezing is delayed and water-cement ratio is low, the loss of compressive strength decreases. In addition, concrete made with high-early-strength cement is less susceptible to frost damage than concrete made with ordinary portland cement.

  • PDF

플라이애시 및 실리카흄을 사용한 고강도유동화콘크리트의 공학적 특성에 관한 실험적 연구 (제1보, 아직 굳지않은 콘크리트의 시공성 검토) (An Experimental Study on the Engineering Properties of High Strength Flowing Concrete Using Flyash and Silicafume (Part I. Workability of Fresh Concrete))

  • 김진만;이상수;김규용;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.161-166
    • /
    • 1994
  • Production of high strength concrete requires a low water-cement ratio and this leads to the high cement content. Mineral admixture like fly ash(FA) is often cheaper than ordinary portland cement(OPC) and this factor in combination with possible improvement in workability and moderation of the heat evolution of the cement-rich mixes tends to encourage its use. The other mineral admixture that its use has been widly advocated is silica fume that increases compressive strength due to its pozzolanic reaction. The objective of this study is to assess the contribution of mineral admixtures(FA, SF) to the workability and the strength of concrete with low water-binder ratios. In this experimental study that investigates and analyzes the properties of fresh concrete, it is presented that using admixtures like flysh and silica fume as binding material increases properties of high strength flowing concrete having very low water cementitious ratios of 0.25 and 0.30.

  • PDF

플라이애시 및 실리카흄을 사용한 고강도유동화 콘크리트의 공학적 특성에 관한 실 험적 연구 (제 2보. 경화콘크리트의 공학적 특성 검토) (An Experimental Study on the Engineering Properties of High Strength Flowing Concrete Using Flyash and Silicafume (Part 2. Engineering Properties of Hardened concrete))

  • 김진만;이상수;김규용;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.84-87
    • /
    • 1995
  • Production of high strength concrete requires a low water-cement ratio and this leads to the high cement content. Mineral admixture like fly ash(FA) is often cheaper than ordinary portland cement(OPC) and this factor in combination with possible improvement in workability and moderation of the heat evolution of the cement-rich mixes tends to encourage its use. The other mineral admisture that its use has been widly advocated is silica fume that increases compressive strength due to its pozzolanic reaction. The objective of this study is to assess the contribution of mineral admixtures(FA, SF) to the workability and the strength of concrete with low water-binder ratios. In this experimental study that investigates and analyzes the properties of fresh concrete. it is presented that using admixtures like flyash and silica fume as binding material increases properties of high strength flowing concrete having very low water cementitious ratios of 0.25 and 0.30.

  • PDF

Improvement of the Early Age Strength of Low Cement Concrete Using High Volume Mineral Admixture

  • Park, Jong-Ho;Kim, Yong-Ro;Song, Young-Chan;Song, Dong Yub;Kim, Gyu-Yong
    • 한국건축시공학회지
    • /
    • 제12권6호
    • /
    • pp.566-574
    • /
    • 2012
  • To address the problem of global warming, consumption of cement, the main material of concrete, should be decreased. Unfortunately, when industrial by-products are used in large quantities as admixture, the early age strength of concrete will be decreased, reducing its viability for use in concrete structures. Therefore, in this study, the application of an ionization accelerator and alkaline activator as addition agent of superplasticizer were investigated to secure a similar early age strength to that of normal concrete, thus increasing the viability of low cement concrete. Through the investigation, it was found that specimens that used a combination of Alkaline-activator (Na2Sio3) and ionization accelerator (Amine) had the highest early and long-age compressive strength. From this, we can determine an appropriate range of application of superplasticizer to improve early-age compressive strength of low cement concrete.

골재의 온도 변화에 따른 저발열 포틀랜드 시멘트 콘크리트의 특성 (Properties of Low Heat Portland Cement Concrete by Changing Temperature of Aggregate)

  • 조용진;박광수;신수균;원종필
    • 한국농공학회논문집
    • /
    • 제46권4호
    • /
    • pp.49-55
    • /
    • 2004
  • Properties of concrete using low heat portland cement is different from using ordinary portland cement and temperature of aggregate can be expected to have an important influence on its properties. In this study, experiment by setting up 5 levels (40, 30, 20, 4, $-2^{\circ}C$) by temperature of aggregate for evaluation properties of concrete using low heat portland cement was conducted. The experiments include slump test, air content test, change of slump, change of air content and compressive strength of concrete test. As the result of experiments, slump and air content was decreased by increasing temperature of aggregate. But it was not exceeding it's limit. Change of slump and air content was rapidly decrease by decreasing temperature of aggregate. At early age, compressive strength was influenced by the temperature of aggregate.

벨라이트시멘트를 사용한 콘크리트의 강도특성에 대한 실험적 연구 (An Experimental Study on the Strength of Concrete Using the Belite Cement)

  • 문한영;문대중;하상욱;김기수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.61-64
    • /
    • 1997
  • As construction technology advances, most of concrete structures are becoming larger and taller. Therefore, high strength and quality concrete is necessary for them. So, the proposal of using belite cement is investigated to satisfy high flowing, low heat, and high strength. In this study, the compressive strength, tensile strength, and modulous of elasticity of concrete using belite cement was considered according to the mix proposition condition as a water-cement ratio, unit cement content, and sand percentage.

  • PDF