• Title/Summary/Keyword: loss modulus

Search Result 373, Processing Time 0.022 seconds

Kalman Filter Estimation of the Servo Valve Effective Orifice Area for a Auxiliary Power Unit (보조 동력장치용 서보밸브 유효 오리피스 면적의 칼만필터 추정)

  • Zhang, J.F.;Kim, C.T.;Jeong, H.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.4
    • /
    • pp.1-7
    • /
    • 2007
  • Flow rate is one of the important variables for precise motion control and detection of the faults and fluid loss in many hydraulic components and systems. But in many cases, it is not easy to measure it directly. The orifice area of a servo valve by which the fluid flows is one of key factors to monitor the flow rate. In this paper, we have constructed an estimation algorithm for the effective orifice area by using the model of a servo valve cylinder control system and Kalman filter algorithm. Without geometry information about the servo valve, it is shown that the effective orifice area can be estimated by using only displacement and pressure data corrupted with noise. And the effect of the biased sensor data and system parameter errors on the estimation results are discussed. The paper reveals that sensor calibration is important in accurate estimation and plausible parameter data such as oil bulk modulus and actuator volume are acceptable for the estimation without any error. The estimation algorithm can be used as an useful tool for detecting leakage, monitoring malfunction and/or degradation of the system performance.

  • PDF

Study on Effects of Anti-oxidant and Viscoelastic on Emulsion by the Extract of Astragalus membranaceus (황기(黃芪)추출물의 항산화 효능과 에멀션 점탄성도에 미치는 영향에 관한 연구)

  • Park, Chan-Ik
    • The Korea Journal of Herbology
    • /
    • v.27 no.2
    • /
    • pp.93-97
    • /
    • 2012
  • Objectives : The Astragalus membranaceus has been used to diuretic, tonic, anti-viral, anti-oxidant activities in oriental herb medicine, and in each experiment, proved in this effects. Root of A. membranaceus includes according to flavonoid, saponin, polysaccharide, thus it has been studied for anti-oxidant, anti-inflammatory, anti-cancer activities. However, previous researches have been performed with being limited mainly to food industry. The present study was conducted anti-oxidative activity of A. membranaceus extracts. In addition, The objective of the present study was to determine the possibility for the application of emulsions in the development of A. membranaceus for cosmetics. Methods : In this study, aimed SOD like activity of A. membranaceus extract, effects of A. membranaceus extract on viscoelastic properties of emulsion was measured using rheometer. Results : In the results, 1, 3-butylene glycol extract of A. membranaceus efficiently reduce the active oxygen, SOD like activity of more than 40% decrement depend on concentration. And A. membranaceus extract increase the modulus of elasticity of emulsion, therefore A. membranaceus extract have not influence on stability loss. As such, the A. membranaceus extracts will remain stable when applied to emulsions or skin products. Conclusions : In consequence of this study, A. membranaceus extract can be effectively used in cosmetic emulsions when the relation between natural product extracts and formulation of cosmetics is elucidated. It is highly recommended that rheology be applied to determine the optimal extract concentration for cosmetic formulations.

Manufacturing and characteristics of PAN-based composite carbon fibers containing cellulose particles

  • Yang, Jee-Woo;Jin, Da Young;Lee, Ji Eun;Lee, Seung Goo;Park, Won Ho
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.203-210
    • /
    • 2015
  • This study fabricated low thermal conductive polyacrylonitrile (PAN)-based carbon fibers containing cellulose particles while maintaining their mechanical properties. The high thermal conductivity of carbon fibers limits their application as a high temperature insulator in various systems such as an insulator for propulsion parts in aerospace or missile systems. By controlling process parameters such as the heat treatment temperature of the cellulose particles and the amount of cellulose added, the thermal and mechanical properties of the PAN-based carbon fibers were investigated. The results show that it is possible to manufacture composite carbon fibers with low thermal conductivity. That is, thermal conductivities were reduced by the cellulose particles in the PAN based carbon fibers while at the same time, the tensile strength loss was minimized, and the tensile modulus increased.

An Experimental Study for Improving the Strength of High Strength Concrete with Silica Fume (실리카흄을 혼합한 고강도콘크리트의 강도향상을 위한 실험적 연구)

  • Moon, Han Young;Moon, Dae Joong;Shin, Seung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1069-1080
    • /
    • 1994
  • For complying with the demand of developing high strength concrete, the high strength concrete with higher cement contents and lower water-cement ratio using high range water reducing admixture has been manufactured. In this study, for the purpose of improving the strength of concrete, concrete with silica fume and gypsum was produced so that it was acquired to high compressive strength of $1,058kg/cm^2$, $1,170kg/cm^2$ at age 28 and 91 days, respectively. But neither tensile strength nor modulus of elasticity were highly improved although the compressive strength of the concrete increased. And it was concluded that a higher slump loss of fresh high strength concrete and interior temperature increment of concrete in according to elapsed time than convential concrete should be solved.

  • PDF

Fracture Toughness Improvement of Graphite/Epoxy Composite by Intermittent Interlaminar Bonding (간헐적인 층간접착 을 이용한 Graphite/Epoxy 복합재료 의 파괴인성 개선)

  • 임승규;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.5
    • /
    • pp.425-434
    • /
    • 1984
  • The concept of intermittent interlaminar bonding is investigated as a means of improving the fracture toughness of cross-ply Gr/Ep composites without significant loss of tensile strength and modulus. The concept of linear elastic fracture mechanics(LEFM)is used to study the effects of strong bonded area and bonding composites. The experimental results indicate that the fracture toughness and notch strength of intermittent interlaminar bonded composities are improved and the tensile strength only decreased by 3-8% in comparison to those of the fully bonded composites. Damage zones around the crack tip are detected by the modified X-Ray non-destructive testing technique and the fractography. The improvement of toughness is explained based on the damage zones. The mechanisms of damage zone are shown to be caused by subcrack along the fiber on the 0.deg. ply, matrix cracking along the fiber on the 90.deg. ply, interlaminar delamination, and ply pull-out of the 0.deg. ply.

Development and mechanical properties of bagasse fiber reinforced composites

  • Cao, Yong;Goda, Koichi;Shibata, Shinichi
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.283-298
    • /
    • 2007
  • Environment-friendly composites reinforced with bagasse fiber (BF), a kind of natural fiber as the remains from squeezed sugarcane, were fabricated by injection molding and press molding. As appropriate matrices for injection molding and press molding, polypropylene (PP) and polycaprolactone-cornstarch (PCL-C) were selected, as a typical recyclable resin and biodegradable resin, respectively. The mechanical properties of BF/PP composites were investigated in view of fiber mass fraction and injection molding conditions. And the mechanical properties and the biodegradation of BF/PCL composites were also evaluated. In the case of injection molding, the flexural modulus increased with an increase in fiber mass fraction, and the mechanical properties decreased with an increase in cylinder temperature due to the thermal degradation of BF. The optimum conditions increasing the flexural properties and the impact strength were $90^{\circ}C$ mold temperature, 30 s injection interval, and in the range of 165 to $185^{\circ}C$ cylinder temperature. On the other hand, as to BF/PCL-C fully-green composites, both the flexural properties and the impact strength increased with an increase in fiber mass fraction. It is considered that the BF compressed during preparation could result in the enhancement in mechanical properties. The results of the biodegradability test showed the addition of BF caused the acceleration of weight loss, which increased further with increasing fiber content. This reveals that the addition and the quantities of BF could promote the biodegradation of fully-green composites.

Multi-dimensional seismic response control of offshore platform structures with viscoelastic dampers (II-Experimental study)

  • He, Xiao-Yu;Zhao, Tie-Wei;Li, Hong-Nan;Zhang, Jun
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.2
    • /
    • pp.175-194
    • /
    • 2016
  • Based on the change of traditional viscoelastic damper structure, a brand-new damper is designed to control simultaneously the translational vibration and the rotational vibration for platforms. Experimental study has been carried out on the mechanical properties of viscoelastic material and on its multi-dimensional seismic response control effect of viscoelastic damper. Three types of viscoelastic dampers with different shapes of viscoelastic material are designed to test the influence of excited frequency, strain amplitude and ambient temperature on the mechanical property parameters such as circular dissipation per unit, equivalent stiffness, loss factor and storage shear modulus. Then, shaking table tests are done on a group of single-storey platform systems containing one symmetric platform and three asymmetric platforms with different eccentric forms. Experimental results show that the simulation precision of the restoring force model is rather good for the shear deformation of viscoelastic damper and is also satisfied for the torsion deformation and combined deformations of viscoelastic damper. The shaking table tests have verified that the new-type viscoelastic damper is capable of mitigating the multi-dimensional seismic response of offshore platform.

Structure-property relations for polymer melts: comparison of linear low-density polyethylene and isotactic polypropylene

  • Drozdov, A.D.;Al-Mulla, A.;Gupta, R.K.
    • Advances in materials Research
    • /
    • v.1 no.4
    • /
    • pp.245-268
    • /
    • 2012
  • Results of isothermal torsional oscillation tests are reported on melts of linear low density polyethylene and isotactic polypropylene. Prior to rheological tests, specimens were annealed at various temperatures ranging from $T_a$ = 180 to $310^{\circ}C$ for various amounts of time (from 30 to 120 min). Thermal treatment induced degradation of the melts and caused pronounced decreases in their molecular weights. With reference to the concept of transient networks, constitutive equations are developed for the viscoelastic response of polymer melts. A melt is treated as an equivalent network of strands bridged by junctions (entanglements and physical cross-links). The time-dependent response of the network is modelled as separation of active strands from and merging of dangling strands with temporary nodes. The stress-strain relations involve three adjustable parameters (the instantaneous shear modulus, the average activation energy for detachment of active strands, and the standard deviation of activation energies) that are determined by matching the dependencies of storage and loss moduli on frequency of oscillations. Good agreement is demonstrated between the experimental data and the results of numerical simulation. The study focuses on the effect of molecular weight of polymer melts on the material constants in the constitutive equations.

Properties of Poly(benzoxazole) Copolymer Films Containing Quinoxalinedioxy/Pyridinedioxy Unit

  • Park, A Ram;Lee, Eung Jae;Choi, Jae Kon
    • Elastomers and Composites
    • /
    • v.52 no.2
    • /
    • pp.143-153
    • /
    • 2017
  • Herein we studied the characterization of the PBO films formed via solution casting and thermal cyclization of poly(o-hyroxyamide)s(PHAs) that were synthesized by direct polycondensation of 3,3'-dihydroxybenzidine with 4,4'-(2,3-quinoxalinedioxy) dibenzoic acid and/or 4,4'-(2,3-pyridinedioxy) dibenzoic acid. All the PHAs exhibited inherent viscosities in the range of 0.55~0.84 dL/g in DMAc solution. The copolymers, CPH-2-5, were partially soluble in less polar solvents like pyridine and THF. However, all the PBOs were not soluble in polar solvents, but only partially soluble in sulfuric acid. The temperatures corresponding to 10% weight loss of the PBOs with increasing content of quinoxalinedioxy unit were higher than those of the PHAs, and the char yields at $900^{\circ}C$ in $N_2$, tensile strength, and initial modulus of the PBOs were 1.1~1.3 times, 1.2~1.8, and 1.6~3.3 times higher, respectively, than those of the PHAs. The LOI value of CPB-2 was 38.5%, while that of CPB-1 was the highest at 40.0%. The LOI test confirmed that excellent flame retardants were synthesized.

A Fundamental Study on the High Strength Concrete Using Silica Fume (실리카흄을 혼합(混合)한 콘크리트의 고강도화(高强度化)에 관한 기초적(基礎的) 연구(研究))

  • Moon, Han Young;Kim, Jin Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.33-41
    • /
    • 1992
  • For the purpose of improving the strength of Concrete, Silica Fume which has $SiO_2$ content of 90% and average particle diameter of $0.2{\mu}m$ was substituted to some extent as a cementious material of concrete. By means of using high range water reducing admixture and reducing water-cementions material ratio, the high strength mortar and concrete which have compressive strength of $865kg/cm^2$, $725kg/cm^2$, respectively were acquired. But the fact that the slump loss according to elapsed time was high and the tensile strength and elastic modulus were not improved sufficiently was the problem to be solved.

  • PDF