Browse > Article
http://dx.doi.org/10.12989/amr.2012.1.4.245

Structure-property relations for polymer melts: comparison of linear low-density polyethylene and isotactic polypropylene  

Drozdov, A.D. (Department of Chemical Engineering, West Virginia University)
Al-Mulla, A. (Department of Chemical Engineering, Kuwait University)
Gupta, R.K. (Department of Chemical Engineering, West Virginia University)
Publication Information
Advances in materials Research / v.1, no.4, 2012 , pp. 245-268 More about this Journal
Abstract
Results of isothermal torsional oscillation tests are reported on melts of linear low density polyethylene and isotactic polypropylene. Prior to rheological tests, specimens were annealed at various temperatures ranging from $T_a$ = 180 to $310^{\circ}C$ for various amounts of time (from 30 to 120 min). Thermal treatment induced degradation of the melts and caused pronounced decreases in their molecular weights. With reference to the concept of transient networks, constitutive equations are developed for the viscoelastic response of polymer melts. A melt is treated as an equivalent network of strands bridged by junctions (entanglements and physical cross-links). The time-dependent response of the network is modelled as separation of active strands from and merging of dangling strands with temporary nodes. The stress-strain relations involve three adjustable parameters (the instantaneous shear modulus, the average activation energy for detachment of active strands, and the standard deviation of activation energies) that are determined by matching the dependencies of storage and loss moduli on frequency of oscillations. Good agreement is demonstrated between the experimental data and the results of numerical simulation. The study focuses on the effect of molecular weight of polymer melts on the material constants in the constitutive equations.
Keywords
thermal properties; isotactic polypropylene; linear low-density polyethylene; molecular weight; viscoelasticity; thermal degradation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Rangarajan, P., Bhattacharyya, D. and Grulke, E. (1998), "HDPE liquefaction: Random chain scission model", J. Appl. Polym. Sci., 70(6), 1239-1251.   DOI   ScienceOn
2 Sugimoto, M., Masubuchi, Y., Takimoto, J. and Koyama, K. (2001), "Melt rheology of polypropylene containing small amounts of high molecular weight chain. I. Shear flow", J. Polym. Sci. Pol. Phys., 39(21), 2692-2704.   DOI   ScienceOn
3 Sugimoto, M., Masubuchi, Y., Takimoto, J. and Koyama, K. (2001), "Melt rheology of polypropylene containing small amounts of high-molecular-weight chain. 2. uniaxial and biaxial extensional flow", Macromolecules, 34(17), 6056-6063.   DOI   ScienceOn
4 Sweeney, J., Collins, T.L.D., Coates, P.D. and Duckett, R.A. (1999), "High-temperature large strain viscoelastic behavior of polypropylene modeled using an inhomogeneously strained network", J. Appl. Polym. Sci., 72(4), 563-575.   DOI   ScienceOn
5 Tanaka, F. and Edwards, S.F. (1992), "Viscoelastic properties of physically cross-linked networks - transient network theory"; Macromolecules, 25(5), 1516-1523.   DOI
6 Tiemblo, P., Gomez-Elvira, J.M., Beltran, S.G., Matisova-Rychla, L. and Rychly, J. (2002), "Melting and a Relaxation Effects on the Kinetics of Polypropylene Thermooxidation in the Range $80170^{\circ}C$", Macromolecules, 35(15), 5922-5926.   DOI   ScienceOn
7 Van Prooyen, M., Bremner, T. and Rudin, A. (1994), "Mechanism of shear modification of low density polyethylene", Polym. Eng. Sci., 34(7), 570-579.   DOI   ScienceOn
8 Wang, X., Tzoganakis, C. and Rempel, G. L. (1996), "Chemical modification of polypropylene with peroxide/pentaerythritoltriacrylate by reactive extrusion", J. Appl. Polym. Sci., 61(8), 1395-1404.   DOI   ScienceOn
9 Yamamoto, M. (1956), "The visco-elastic properties of network structure I. general formalism", J. Phys. Soc. Jpn., 11(4), 413-421.   DOI
10 Fujiyama, M., Kitajima, Y. and Inata, H. (2002), "Rheological properties of polypropylenes with different molecular weight distribution characteristics", J. Appl. Polym. Sci., 84(12), 2128-2141.   DOI   ScienceOn
11 Fujiyama, M. and Inata, H. (2002), "Rheological properties of metallocene isotactic polypropylenes", J. Appl. Polym. Sci., 84(12), 2157-2170.   DOI   ScienceOn
12 Gao, J.M., Lu, Y.J., Wei, G.S., Zhang, X.H., Liu, Y.Q. and Qiao, J.L. (2002), "Effect of radiation on the crosslinking and branching of polypropylene", J. Appl. Polym. Sci., 85(8), 1758-1764.   DOI   ScienceOn
13 Gao, Z., Kaneko, T., Amasaki, I. and Nakada, M. (2003), "A kinetic study of thermal degradation of polypropylene", Polym. Degrad. Stabil., 80(2), 269-274.   DOI   ScienceOn
14 Gennes, P.G. (1979), Scaling concepts in polymer physics, Cornell University Press, Ithaca, N.Y.
15 Graessley, W. (1982), "Entangled linear, branched and network polymer systems - Molecular theories", Adv. Polym Sci., 47, 67-117.   DOI
16 Green, M.S. and Tobolsky, A.V. (1946), "A new approach to the theory of relaxing polymeric media", J. Chem. Phys., 14(2), 80-92.   DOI
17 Horrocks, A.R., Valinejad, K. and Crighton, J.S. (1994), "Demonstration of the possible competing effects of oxidation and chain scission in orientated and stressed polypropylenes", J. Appl. Polym. Sci., 54(5), 593-600.   DOI   ScienceOn
18 Iijima, M. and Strobl, G. (2000), "Isothermal crystallization and melting of isotactic polypropylene analyzed by time- and temperature-dependent small-angle X-ray scattering experiments", Macromolecules, 33(14), 5204-5214.   DOI   ScienceOn
19 Kim, Y.C., Yang, K.S. and Choi, C.H. (1998), "Study of the relationship between shear modification and melt fracture in extrusion of LDPE", J. Appl. Polym. Sci., 70(11), 2187-2195.   DOI   ScienceOn
20 Kim, M.H., Londono, J.D. and Habenschuss, A. (2000), "Structure of molten stereoregularpolyolefins with different side-chain sizes: Linear polyethylene, polypropylene, poly(1-butene), and poly(4-methyl-1-pentene)", J. Polym. Sci. Pol. Phys., 38, 2480-2485.   DOI   ScienceOn
21 Kumar, G.S., Kumar, V.R. and Madras, G. (2002), "Continuous distribution kinetics for the thermal degradation of LDPE in solution", J. Appl. Polym. Sci., 84(4), 681-690.   DOI   ScienceOn
22 Lodge, A.S. (1968), "Constitutive equations from molecular network theories for polymer solutions", Rheol. Acta, 7(4), 379-392.   DOI   ScienceOn
23 Matsuda, H., Aoike, T., Uehara, H., Yamanobe, T. and Komoto, T. (2001), "Overlapping of different rearrangement mechanisms upon annealing for solution-crystallized polyethylene", Polymer, 42(11), 5013-5021.   DOI   ScienceOn
24 Mader, D., Heinemann, J., Walter, P. and Mulhaupt, R. (2000), "Influence of n-alkyl branches on glass-transition temperatures of branched polyethylenes prepared by means of metallocene- and palladium-based catalysts", Macromolecules, 33(4), 1254-1261.   DOI   ScienceOn
25 Perez, C.J., Cassano, G.A., Valles, E.M., Quinzani, L.M. and Failla, M.D. (2003), "Tensile mechanical behavior of linear high-density polyethylenes modified with organic peroxide", Polym. Eng. Sci., 43(9), 1624-1633.   DOI   ScienceOn
26 Carrot, C., Revenu, P. and Guillet, J. (1996), "Rheological behavior of degraded polypropylene melts: From MWD to dynamic moduli", J. Appl. Polym. Sci., 61(11), 1887-1897.   DOI   ScienceOn
27 Combs, R.L., Slonaker, D.F. and Coover, H.W. (1969), "Effects of molecular weight distribution and branching on rheological properties of polyolefin melts", J. Appl. Polym. Sci., 13(3), 519-534.   DOI
28 Derrida, B. (1980), "Random-energy model: Limit of a family of disordered models", Phys. Rev. Lett., 45(2), 79-82.   DOI
29 Dlubek, G., Bamford, D., Rodriguez-Gonzalez, A., Bornemann, S., Stejny, J., Schade, B., Alam, M.A. and Arnold, M. (2002), "Free volume, glass transition, and degree of branching in metallocene-based propylene/${\alpha}$-olefin copolymers: Positron lifetime, density, and differential scanning calorimetric studies", J. Polym. Sci. Pol. Phys., 40(5), 434-453.   DOI   ScienceOn
30 Doi, M. and Edwards, S.F. (1986), The theory of polymer dynamics, Oxford University Press, New York.
31 Drozdov, A.D. and Christiansen, J.D. (2003), "The effect of annealing on the nonlinear viscoelastic response of isotactic polypropylene", Polym. Eng. Sci., 43(4), 946-959.   DOI   ScienceOn
32 Drozdov, A.D. and Yuan, Q. (2003), "Effect of annealing on the viscoelastic and viscoplastic responses of lowdensity polyethylene", J. Polym. Sci. Pol. Phys., 41(14), 1638-1655.   DOI   ScienceOn
33 Drozdov, A.D. and Christiansen, J.D. (2003), "The effect of annealing on the elastoplastic and viscoelastic responses of isotactic polypropylene", Comp. Mater. Sci., 27(4), 403-422.   DOI   ScienceOn
34 Drozdov, A.D., Agrawal, S. and Gupta, R.K. (2005), "The effect of temperature on the viscoelastic response of polymer melts", Int. J. Eng. Sci., 43(3-4), 304-320.   DOI   ScienceOn
35 Drozdov, A.D. and Yuan, Q. (2003), "The viscoelastic and viscoplastic behavior of low-density polyethylene", Int. J. Solids Struct., 40(10), 2321-2342.   DOI   ScienceOn
36 Drozdov, A.D. (2003), "Kinetic equations for thermal degradation of polymers", arXiv:cond-mat/0309677v1[cond-mat.mtrl-sci].
37 Barakos, G., Mitsoulis, E., Tzoganakis, C. and Kajiwara, T. (1996), "Rheological characterization of controlledrheology polypropylenes using integral constitutive equations", J. Appl. Polym. Sci., 59(3), 543-556.   DOI
38 Berzin, F., Vergnes, B. and Delamare, L. (2001), "Rheological behavior of controlled-rheology polypropylenes obtained by peroxide-promoted degradation during extrusion: Comparison between homopolymer and copolymer", J. Appl. Polym. Sci., 80(8), 1243-1252.   DOI   ScienceOn
39 Eckstein, A., Friedrich, C., Lobbrecht, A., Spitz, R. and Mülhaupt, R. (1997), "Comparison of the viscoelastic properties of syndio- and isotactic polypropylenes", Acta Polym., 48(1-2), 41-46.   DOI
40 Fayolle, B., Audouin, L. and Verdu, J. (2002), "Initial steps and embrittlement in the thermal oxidation of stabilised polypropylene films", Polym. Degrad. Stabil., 75(1), 123-129.   DOI   ScienceOn
41 Ferry, J.D. (1980), Viscoelastic properties of polymers, 3rd Ed., Wiley, New York.