• Title/Summary/Keyword: loop gain

Search Result 636, Processing Time 0.021 seconds

A Calibration-Free 14b 70MS/s 0.13um CMOS Pipeline A/D Converter with High-Matching 3-D Symmetric Capacitors (높은 정확도의 3차원 대칭 커패시터를 가진 보정기법을 사용하지 않는 14비트 70MS/s 0.13um CMOS 파이프라인 A/D 변환기)

  • Moon, Kyoung-Jun;Lee, Kyung-Hoon;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.55-64
    • /
    • 2006
  • This work proposes a calibration-free 14b 70MS/s 0.13um CMOS ADC for high-performance integrated systems such as WLAN and high-definition video systems simultaneously requiring high resolution, low power, and small size at high speed. The proposed ADC employs signal insensitive 3-D fully symmetric layout techniques in two MDACs for high matching accuracy without any calibration. A three-stage pipeline architecture minimizes power consumption and chip area at the target resolution and sampling rate. The input SHA with a controlled trans-conductance ratio of two amplifier stages simultaneously achieves high gain and high phase margin with gate-bootstrapped sampling switches for 14b input accuracy at the Nyquist frequency. A back-end sub-ranging flash ADC with open-loop offset cancellation and interpolation achieves 6b accuracy at 70MS/s. Low-noise current and voltage references are employed on chip with optional off-chip reference voltages. The prototype ADC implemented in a 0.13um CMOS is based on a 0.35um minimum channel length for 2.5V applications. The measured DNL and INL are within 0.65LSB and l.80LSB, respectively. The prototype ADC shows maximum SNDR and SFDR of 66dB and 81dB and a power consumption of 235mW at 70MS/s. The active die area is $3.3mm^2$.

Design of the Wideband Notched Compact UWB Antenna (넓은 대역폭이 소거된 소형 UWB 안테나 설계)

  • Kim, Cheol-Bok;Lim, Jung-Sup;Lee, Ho-Sang;Jang, Jae-Sam;Jung, Young-Ho;Jo, Dong-Ki;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.9
    • /
    • pp.54-62
    • /
    • 2007
  • In this paper, a novel wideband notched compact UWB antenna is designed to satisfy the licensed UWB frequency bandwidth($3.1{\sim}4.8$ GHz, $7.1{\sim}10.2$ GHz) by symmetrically arranging two adjacent sectorial loop antennas. The wideband($4.8{\sim}7.1$ GHz) notch can be obtained by inserting the inverted-L shaped slits on the patch. The designed UWB antenna has return loss lower than -10dB at 3.1 GHz and over, group delay value lower than 1 ns and the linear phase property. The optimized UWB antenna inserted the inverted-L shaped slits has return loss great than -10dB, 5 ns of group delay, nonlinear phase and decreased gain properties over the frequency band, 4.8 GHz to 7.1 GHz.

The Study on Knitting Techniques in Joseon Dynasty (조선시대 복식의 니트 기법 연구)

  • Lim, Young-Ja;Kwen, Jin
    • Journal of the Korean Society of Costume
    • /
    • v.54 no.1
    • /
    • pp.23-36
    • /
    • 2004
  • The knitting, which has developed from the onset of human civilization, has a close relation to dwelling as well as to clothing itself. Its progress has taken shape in a variety of forms according to nature-friendly tools and its knit texture in the past is different from that of modern times. With this basic idea, the work aims at the further study of various knitting structure which triggered the origin of modern techniques, the establishment of those methods, and the finding of what means was utilized earlier based on these. By doing that, this study will provide the foundation in the Korean historical timeframe in knitting field and give definition to knit wear in a historical sense. As to definition, the outcome in the research boils down to two categories. broad meaning and narrow meaning. The former can be the hook-formed textile, referring to making, twisting, or binding the knots. On the other hands, the latter, that is, narrow type, can be the loop-linked fabric which can be defined as modern knitting. The knitting dates back to the ancient way of binding structure, combining structure in other words, and braiding structure and this kept dividing into subgroups like Netting. Nalbinding, Sprang and Crochet as the usage of hands and tools by mankind has got improved. And it changed into knitting and crochet which means a bamboo needle-hook knitting (larger needle type) and a crochet-hook knitting (smaller needle type), respectively through middle ages and modern times and settled down to the production of fabric. In this work, Netting, Nalbinding, Sprang and Crochet are classified as ancient category in which these originate the modern knitting method. Though the modern type of knitting is not found in the Joseon Dynasty, some various methods from the ancient twisting skill and binding skill where the materials with easy access to acquisition in the nature such as rattan, straw, horsehair, hemp, rush, cotton, silk and the like to Netting, Nalbinding and Sprang except Crochet were handed down and used in costume for diverse application. This work can provide the basic frame in terms of Korean history of knitting which has been excluded in the relevant researches until now. When applying the study, it would trigger the initiation of more versatile design with which the previous unique techniques along with modern techniques can be adopted in the clothing market as knit designs gain in public favor more and more.

Robust and Non-fragile $H_{\infty}$ Decentralized Fuzzy Model Control Method for Nonlinear Interconnected System with Time Delay (시간지연을 가지는 비선형 상호연결시스템의 견실비약성 $H_{\infty}$ 분산 퍼지모델 제어기법)

  • Kim, Joon-Ki;Yang, Seung-Hyeop;Kwon, Yeong-Sin;Bang, Kyung-Ho;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.64-72
    • /
    • 2010
  • In general, due to the interactions among subsystems, it is difficult to design an decentralized controller for nonlinear interconnected systems. In this study, the model of nonlinear interconnected systems is studied via decentralized fuzzy control method with time delay and polytopic uncertainty. First, the nonlinear interconnected system is represented by an equivalent Takagi-Sugeno type fuzzy model. And the represented model can be rewritten as Parameterized Linear Matrix Inequalities(PLMIs), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. We show that the resulting fuzzy controller guarantees the asymptotic stability and disturbance attenuation of the closed-loop system in spite of controller gain variations within a resulted polytopic region by example and simulations.

A Study on the Mobile Communication System for the Ultra High Speed Communication Network (초고속 정보통신망을 위한 이동수신 시스템에 관한 연구)

  • Kim, Kab-Ki;Moon, Myung-Ho;Shin, Dong-Hun;Lee, Jong-Arc
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.1-14
    • /
    • 1998
  • In this paper, Antenna, LNA, Mixer, VCO, and Modulation/Demodulation in Baseband processor which are the RF main components in Wireless LAN system for ultra high-speed communications network are studied. Antenna bandwidth and selective fading due to multipath can be major obstacles in high speed digital communications. To solve this problem, wide band MSA which has loop-structure magnetic antenna characteristics is designed. Distributed mixer using dual-gate GaAs MESFET can achieve over 10dB LO/RF isolation without hybrid, and minimize circuit size. As linear mixing signal is produced, distortions can be decreased at baseband signals. Conversion gain is achieved by mixing and amplification simultaneously. Mixer is designed to have wide band characteristics using distributed amplifier. In VCO design, Oscillator design method by large signal analysis is used to produce stable signal. Modulation/Demodulation system in baseband processor, DS/SS technique which is robust against noise and interference is used to eliminate the effect of multipath propagation. DQPSK modulation technique with M-sequences for wideband PN spreading signals is adopted because of BER characteristic and high speed digital signal transmission.

  • PDF

Study on Compensation Method of Anisotropic H-field Antenna (Loran H-field 안테나의 지향성 보상 기법 연구)

  • Park, Sul-Gee;Son, Pyo-Woong
    • Journal of Navigation and Port Research
    • /
    • v.43 no.3
    • /
    • pp.172-178
    • /
    • 2019
  • Although the needs for providing resilient PNT information are increasing, threats due to the intentional RFI or space weather change are challenging to resolve. eLoran, which is a terrestrial navigation system that use a high-power signal is considered as a best back-up navigation system. Depending on the user's environment in the eLoran system, the user may use one of E-field or H-field antennas. H-field antenna, which has no restriction on setting stable ground and is relatively resistant to noise of general electronic equipment, is composed of two loops, and shows anisotropic gain pattern due to the different measurement at the two loops. Therefore, the H-field antenna's phase estimation value of signal varies depending on its direction even at the static environment. The error due to the direction of the signal should be eliminated if the user want to estimate the own position more precisely. In this paper, a method to compensate the error according to the geometric distribution between the H-field antenna and the transmitting station is proposed. A model was developed to compensate the directional error of H-field antenna based on the signal generated from the eLoran signal simulator. The model is then used to the survey measurement performed in the land area and verify its performance.