• Title/Summary/Keyword: long-term memory

Search Result 807, Processing Time 0.024 seconds

A Study on the Index Estimation of Missing Real Estate Transaction Cases Using Machine Learning (머신러닝을 활용한 결측 부동산 매매 지수의 추정에 대한 연구)

  • Kim, Kyung-Min;Kim, Kyuseok;Nam, Daisik
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.171-181
    • /
    • 2022
  • The real estate price index plays key roles as quantitative data in real estate market analysis. International organizations including OECD publish the real estate price indexes by country, and the Korea Real Estate Board announces metropolitan-level and municipal-level indexes. However, when the index is set on the smaller spatial unit level than metropolitan and municipal-level, problems occur: missing values. As the spatial scope is narrowed down, there are cases where there are few or no transactions depending on the unit period, which lead index calculation difficult or even impossible. This study suggests a supervised learning-based machine learning model to compensate for missing values that may occur due to no transaction in a specific range and period. The models proposed in our research verify the accuracy of predicting the existing values and missing values.

A Study on the Hyper-parameter Optimization of Bitcoin Price Prediction LSTM Model (비트코인 가격 예측을 위한 LSTM 모델의 Hyper-parameter 최적화 연구)

  • Kim, Jun-Ho;Sung, Hanul
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.17-24
    • /
    • 2022
  • Bitcoin is a peer-to-peer cryptocurrency designed for electronic transactions that do not depend on the government or financial institutions. Since Bitcoin was first issued, a huge blockchain financial market has been created, and as a result, research to predict Bitcoin price data using machine learning has been increasing. However, the inefficient Hyper-parameter optimization process of machine learning research is interrupting the progress of the research. In this paper, we analyzes and presents the direction of Hyper-parameter optimization through experiments that compose the entire combination of the Timesteps, the number of LSTM units, and the Dropout ratio among the most representative Hyper-parameter and measure the predictive performance for each combination based on Bitcoin price prediction model using LSTM layer.

Protective effects of Populus tomentiglandulosa against cognitive impairment by regulating oxidative stress in an amyloid beta25-35-induced Alzheimer's disease mouse model

  • Kwon, Yu Ri;Kim, Ji-Hyun;Lee, Sanghyun;Kim, Hyun Young;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • v.16 no.2
    • /
    • pp.173-193
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Alzheimer's disease (AD) is one of the most representative neurodegenerative disease mainly caused by the excessive production of amyloid beta (Aβ). Several studies on the antioxidant activity and protective effects of Populus tomentiglandulosa (PT) against cerebral ischemia-induced neuronal damage have been reported. Based on this background, the present study investigated the protective effects of PT against cognitive impairment in AD. MATERIALS/METHODS: We orally administered PT (50 and 100 mg/kg/day) for 14 days in an Aβ25-35-induced mouse model and conducted behavioral experiments to test cognitive ability. In addition, we evaluated the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum and measured the production of lipid peroxide, nitric oxide (NO), and reactive oxygen species (ROS) in tissues. RESULTS: PT treatment improved the space perceptive ability in the T-maze test, object cognitive ability in the novel object recognition test, and spatial learning/long-term memory in the Morris water-maze test. Moreover, the levels of AST and ALT were not significantly different among the groups, indicating that PT did not show liver toxicity. Furthermore, administration of PT significantly inhibited the production of lipid peroxide, NO, and ROS in the brain, liver, and kidney, suggesting that PT protected against oxidative stress. CONCLUSIONS: Our study demonstrated that administration of PT improved Aβ25-35-induced cognitive impairment by regulating oxidative stress. Therefore, we propose that PT could be used as a natural agent for AD improvement.

Comparison of solar power prediction model based on statistical and artificial intelligence model and analysis of revenue for forecasting policy (통계적 및 인공지능 모형 기반 태양광 발전량 예측모델 비교 및 재생에너지 발전량 예측제도 정산금 분석)

  • Lee, Jeong-In;Park, Wan-Ki;Lee, Il-Woo;Kim, Sang-Ha
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.355-363
    • /
    • 2022
  • Korea is pursuing a plan to switch and expand energy sources with a focus on renewable energy with the goal of becoming carbon neutral by 2050. As the instability of energy supply increases due to the intermittent nature of renewable energy, accurate prediction of the amount of renewable energy generation is becoming more important. Therefore, the government has opened a small-scale power brokerage market and is implementing a system that pays settlements according to the accuracy of renewable energy prediction. In this paper, a prediction model was implemented using a statistical model and an artificial intelligence model for the prediction of solar power generation. In addition, the results of prediction accuracy were compared and analyzed, and the revenue from the settlement amount of the renewable energy generation forecasting system was estimated.

A Systems Engineering Approach for Predicting NPP Response under Steam Generator Tube Rupture Conditions using Machine Learning

  • Tran Canh Hai, Nguyen;Aya, Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.94-107
    • /
    • 2022
  • Accidents prevention and mitigation is the highest priority of nuclear power plant (NPP) operation, particularly in the aftermath of the Fukushima Daiichi accident, which has reignited public anxieties and skepticism regarding nuclear energy usage. To deal with accident scenarios more effectively, operators must have ample and precise information about key safety parameters as well as their future trajectories. This work investigates the potential of machine learning in forecasting NPP response in real-time to provide an additional validation method and help reduce human error, especially in accident situations where operators are under a lot of stress. First, a base-case SGTR simulation is carried out by the best-estimate code RELAP5/MOD3.4 to confirm the validity of the model against results reported in the APR1400 Design Control Document (DCD). Then, uncertainty quantification is performed by coupling RELAP5/MOD3.4 and the statistical tool DAKOTA to generate a large enough dataset for the construction and training of neural-based machine learning (ML) models, namely LSTM, GRU, and hybrid CNN-LSTM. Finally, the accuracy and reliability of these models in forecasting system response are tested by their performance on fresh data. To facilitate and oversee the process of developing the ML models, a Systems Engineering (SE) methodology is used to ensure that the work is consistently in line with the originating mission statement and that the findings obtained at each subsequent phase are valid.

Consistency check algorithm for validation and re-diagnosis to improve the accuracy of abnormality diagnosis in nuclear power plants

  • Kim, Geunhee;Kim, Jae Min;Shin, Ji Hyeon;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3620-3630
    • /
    • 2022
  • The diagnosis of abnormalities in a nuclear power plant is essential to maintain power plant safety. When an abnormal event occurs, the operator diagnoses the event and selects the appropriate abnormal operating procedures and sub-procedures to implement the necessary measures. To support this, abnormality diagnosis systems using data-driven methods such as artificial neural networks and convolutional neural networks have been developed. However, data-driven models cannot always guarantee an accurate diagnosis because they cannot simulate all possible abnormal events. Therefore, abnormality diagnosis systems should be able to detect their own potential misdiagnosis. This paper proposes a rulebased diagnostic validation algorithm using a previously developed two-stage diagnosis model in abnormal situations. We analyzed the diagnostic results of the sub-procedure stage when the first diagnostic results were inaccurate and derived a rule to filter the inconsistent sub-procedure diagnostic results, which may be inaccurate diagnoses. In a case study, two abnormality diagnosis models were built using gated recurrent units and long short-term memory cells, and consistency checks on the diagnostic results from both models were performed to detect any inconsistencies. Based on this, a re-diagnosis was performed to select the label of the second-best value in the first diagnosis, after which the diagnosis accuracy increased. That is, the model proposed in this study made it possible to detect diagnostic failures by the developed consistency check of the sub-procedure diagnostic results. The consistency check process has the advantage that the operator can review the results and increase the diagnosis success rate by performing additional re-diagnoses. The developed model is expected to have increased applicability as an operator support system in terms of selecting the appropriate AOPs and sub-procedures with re-diagnosis, thereby further increasing abnormal event diagnostic accuracy.

A Study on the Application of Machine Learning to Improve BIS (Bus Information System) Accuracy (BIS(Bus Information System) 정확도 향상을 위한 머신러닝 적용 방안 연구)

  • Jang, Jun yong;Park, Jun tae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.3
    • /
    • pp.42-52
    • /
    • 2022
  • Bus Information System (BIS) services are expanding nationwide to small and medium-sized cities, including large cities, and user satisfaction is continuously improving. In addition, technology development related to improving reliability of bus arrival time and improvement research to minimize errors continue, and above all, the importance of information accuracy is emerging. In this study, accuracy performance was evaluated using LSTM, a machine learning method, and compared with existing methodologies such as Kalman filter and neural network. As a result of analyzing the standard error for the actual travel time and predicted values, it was analyzed that the LSTM machine learning method has about 1% higher accuracy and the standard error is about 10 seconds lower than the existing algorithm. On the other hand, 109 out of 162 sections (67.3%) were analyzed to be excellent, indicating that the LSTM method was not entirely excellent. It is judged that further improved accuracy prediction will be possible when algorithms are fused through section characteristic analysis.

A Study on the Demand Prediction Model for Repair Parts of Automotive After-sales Service Center Using LSTM Artificial Neural Network (LSTM 인공신경망을 이용한 자동차 A/S센터 수리 부품 수요 예측 모델 연구)

  • Jung, Dong Kun;Park, Young Sik
    • The Journal of Information Systems
    • /
    • v.31 no.3
    • /
    • pp.197-220
    • /
    • 2022
  • Purpose The purpose of this study is to identifies the demand pattern categorization of repair parts of Automotive After-sales Service(A/S) and proposes a demand prediction model for Auto repair parts using Long Short-Term Memory (LSTM) of artificial neural networks (ANN). The optimal parts inventory quantity prediction model is implemented by applying daily, weekly, and monthly the parts demand data to the LSTM model for the Lumpy demand which is irregularly in a specific period among repair parts of the Automotive A/S service. Design/methodology/approach This study classified the four demand pattern categorization with 2 years demand time-series data of repair parts according to the Average demand interval(ADI) and coefficient of variation (CV2) of demand size. Of the 16,295 parts in the A/S service shop studied, 96.5% had a Lumpy demand pattern that large quantities occurred at a specific period. lumpy demand pattern's repair parts in the last three years is predicted by applying them to the LSTM for daily, weekly, and monthly time-series data. as the model prediction performance evaluation index, MAPE, RMSE, and RMSLE that can measure the error between the predicted value and the actual value were used. Findings As a result of this study, Daily time-series data were excellently predicted as indicators with the lowest MAPE, RMSE, and RMSLE values, followed by Weekly and Monthly time-series data. This is due to the decrease in training data for Weekly and Monthly. even if the demand period is extended to get the training data, the prediction performance is still low due to the discontinuation of current vehicle models and the use of alternative parts that they are contributed to no more demand. Therefore, sufficient training data is important, but the selection of the prediction demand period is also a critical factor.

Personal Driving Style based ADAS Customization using Machine Learning for Public Driving Safety

  • Giyoung Hwang;Dongjun Jung;Yunyeong Goh;Jong-Moon Chung
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.39-47
    • /
    • 2023
  • The development of autonomous driving and Advanced Driver Assistance System (ADAS) technology has grown rapidly in recent years. As most traffic accidents occur due to human error, self-driving vehicles can drastically reduce the number of accidents and crashes that occur on the roads today. Obviously, technical advancements in autonomous driving can lead to improved public driving safety. However, due to the current limitations in technology and lack of public trust in self-driving cars (and drones), the actual use of Autonomous Vehicles (AVs) is still significantly low. According to prior studies, people's acceptance of an AV is mainly determined by trust. It is proven that people still feel much more comfortable in personalized ADAS, designed with the way people drive. Based on such needs, a new attempt for a customized ADAS considering each driver's driving style is proposed in this paper. Each driver's behavior is divided into two categories: assertive and defensive. In this paper, a novel customized ADAS algorithm with high classification accuracy is designed, which divides each driver based on their driving style. Each driver's driving data is collected and simulated using CARLA, which is an open-source autonomous driving simulator. In addition, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) machine learning algorithms are used to optimize the ADAS parameters. The proposed scheme results in a high classification accuracy of time series driving data. Furthermore, among the vast amount of CARLA-based feature data extracted from the drivers, distinguishable driving features are collected selectively using Support Vector Machine (SVM) technology by comparing the amount of influence on the classification of the two categories. Therefore, by extracting distinguishable features and eliminating outliers using SVM, the classification accuracy is significantly improved. Based on this classification, the ADAS sensors can be made more sensitive for the case of assertive drivers, enabling more advanced driving safety support. The proposed technology of this paper is especially important because currently, the state-of-the-art level of autonomous driving is at level 3 (based on the SAE International driving automation standards), which requires advanced functions that can assist drivers using ADAS technology.

Tunnel wall convergence prediction using optimized LSTM deep neural network

  • Arsalan, Mahmoodzadeh;Mohammadreza, Taghizadeh;Adil Hussein, Mohammed;Hawkar Hashim, Ibrahim;Hanan, Samadi;Mokhtar, Mohammadi;Shima, Rashidi
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.545-556
    • /
    • 2022
  • Evaluation and optimization of tunnel wall convergence (TWC) plays a vital role in preventing potential problems during tunnel construction and utilization stage. When convergence occurs at a high rate, it can lead to significant problems such as reducing the advance rate and safety, which in turn increases operating costs. In order to design an effective solution, it is important to accurately predict the degree of TWC; this can reduce the level of concern and have a positive effect on the design. With the development of soft computing methods, the use of deep learning algorithms and neural networks in tunnel construction has expanded in recent years. The current study aims to employ the long-short-term memory (LSTM) deep neural network predictor model to predict the TWC, based on 550 data points of observed parameters developed by collecting required data from different tunnelling projects. Among the data collected during the pre-construction and construction phases of the project, 80% is randomly used to train the model and the rest is used to test the model. Several loss functions including root mean square error (RMSE) and coefficient of determination (R2) were used to assess the performance and precision of the applied method. The results of the proposed models indicate an acceptable and reliable accuracy. In fact, the results show that the predicted values are in good agreement with the observed actual data. The proposed model can be considered for use in similar ground and tunneling conditions. It is important to note that this work has the potential to reduce the tunneling uncertainties significantly and make deep learning a valuable tool for planning tunnels.