• Title/Summary/Keyword: long-term loading

Search Result 375, Processing Time 0.031 seconds

Experimental study on long-term behavior of RC columns subjected to sustained eccentric load

  • Kim, Chang-Soo;Gong, Yu;Zhang, Xin;Hwang, Hyeon-Jong
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.289-299
    • /
    • 2020
  • To investigate the long-term behavior of eccentrically loaded RC columns, which are more realistic in practice than concentrically loaded RC columns, long-term eccentric loading tests were conducted for 10 RC columns. Test parameters included concrete compressive strength, reinforcement ratio, bar yield strength, eccentricity ratio, slenderness ratio, and loading pattern. Test results showed that the strain and curvature of the columns increased with time, and concrete forces were gradually transferred to longitudinal bars due to the creep and shrinkage of concrete. The long-term behavior of the columns varied with the test parameters, and long-term effects were more pronounced in the case of using the lower strength concrete, lower strength steel, lower bar ratio, fewer loading-step, higher eccentricity ratio, and higher slenderness ratio. However, in all the columns, no longitudinal bars were yielded under service loads at the final measuring day. Meanwhile, the numerical analysis modeling using the ultimate creep coefficient and ultimate shrinkage strain measured from cylinder tests gave quite good predictions for the behavior of the columns.

Long-Term Characteristics on Flexural Performance of Steel Fiber Reinforced Concrete Continuous Slab (강섬유보강콘크리트 연속슬래브 휨성능의 장기거동 특성)

  • Hong, Geon-Ho;Jung, Seong-Won
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.163-170
    • /
    • 2019
  • In spite of various advantages, steel fiber reinforced concrete is still limited in its use due to the insufficient research results on the structural performance and design criteria. This study evaluated the long-term behavior of the steel fiber reinforced concrete slabs by long-term loading experiments based on the short-term load bearing capacity of steel fiber reinforced concrete slabs obtained from previous studies. In this study, long-term loading experiments were carried out on Total four 2-span continuous slab specimens were tested for examining the long-term behavior of steel fiber reinforced concrete members. Long-term behavior characteristics of members were evaluated by measuring the long-term deflection, drying shrinkage, the number and width of cracks. Experimental results showed that the instant deflection of the steel fiber reinforced concrete slab is about 50% of the normal reinforced concrete slab. And, it was analyzed that the long-term deflection of the specimen using steel fiber reinforced concrete was about 10~20% lower than that of normal concrete by the long-term deflection over 100 days. In addition, the slab specimen using steel fiber reinforced concrete was evaluated to have just 70% of the number and width of cracks compared with normal concrete specimens.

Effects of cyclic loading on the long-term deflection of prestressed concrete beams

  • Zhang, Lihai;Mendis, Priyan;Hon, Wong Chon;Fragomeni, Sam;Lam, Nelson;Song, Yilun
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.739-754
    • /
    • 2013
  • Creep and shrinkage have pronounced effects on the long-term deflection of prestressed concrete members. Under repeated loading, the rate of creep in prestressed concrete members is often accelerated. In this paper, an iterative computational procedure based on the well known Model B3 for creep and shrinkage was developed to predict the time-dependent deflection of partially prestressed concrete members. The developed model was validated using the experimental observed deflection behavior of a simply supported partially prestressed concrete beam under repeated loading. The validated model was then employed to make predictions of the long-term deflection of the prestressed beams under a variety of conditions (e.g., water cement ratio, relatively humidity and time at drying). The simulation results demonstrate that ignoring creep and shrinkage could lead to significant underestimation of the long-term deflection of a prestressed concrete member. The model will prove useful in reducing the long-term deflection of the prestressed concrete members via the optimal selection of a concrete mix and prestressing forces.

A study on the improvement method of heat treatment condition for the long-term stability evaluation in the floor impact isolator (층간소음저감재 장기 내구성 평가를 위한 가열시험의 문제점 및 개선방안에 관한 연구)

  • Park, Youn-Joon;Lee, Chan-Gyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.238-243
    • /
    • 2011
  • This study compared Kd, loss factor and thickness of floor impact isolator by loading/unloading heat treatment with results by continuous loading treatment and checked problem and improvement method of heat treatment condition for the long-term stability evaluation of the floor impact isolation. As the results, it is required the change of heat treatment condition unloading now to loading as actual weigh on the floor impact isolator.

  • PDF

Evaluation on Expectation of Deflection of Floor Damping Materials Subjected to Long-Term Load (장기하중을 받는 바닥완충재의 처짐 예측 평가)

  • Kim, Jung-Min;Hong, Yoon-Ki;Kim, Jin-Koo;Lee, Jung-Yoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.19-26
    • /
    • 2016
  • Floor damping materials used in floating floor system to diminish the floor noise have been made with low density and dynamic stiffness. Owing to this low density and dynamic stiffness, the deflection in these materials under long-term loading and cracking of the floor finishing mortar in the floating floor system may occur. This paper presents the results of long-term loading effects on the deflection of different types of floor damping materials. The experimental program involved the long-term loading tests for 490 days loading period on sixteen specimens. Specimens were classified as DM1(Damping Materials) to DM8, depending upon the four main parameters; types, bottom shapes and densities of floor damping materials and amount of loading. Results indicated that the long-term deflection of all specimens of damping materials remained unchanged after 200 days at all loading amounts, except the specimens made up of Polystrene, in which long-term deflection remained unchanged after 160 days at 250 N load and 100 days 500 N load. In this paper, two types of correlation expressions were shown in the deflection range prior to the range where deflection remained constant; two analyses by ISO 20392 and linear regression. In comparison of two analyses and experimental results on the difference of deflection of 16 specimens, the difference of deflection was below 0.4 mm in those analyses in case of that total deflection was below 10 mm. Restrictively, it was judged that the analysis for the deflection of specimens made up of Polystrene is more appropriate using ISO 20392.

A finite element model for long-term analysis of timber-concrete composite beams

  • Fragiacomo, M.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.173-189
    • /
    • 2005
  • The paper presents a finite element model for studying timber-concrete composite beams under long-term loading. Both deformability of connection system and rheological behaviour of concrete, timber and connection are fully considered. The creep of component materials and the influence of moisture content on the creep of timber and connection, the so-called "mechano-sorptive" effect, are evaluated by means of accurate linear models. The solution is obtained by applying an effective step-by-step procedure in time, which does not require storing the whole stress history in some points in order to account for the creep behaviour. Hence the proposed method is suitable for analyses of composite beams subjected to complex loading and thermo-hygrometric histories. The possibility to accurately predict the long-term response is then shown by comparing numerical and experimental results for different tests.

Experimental Study for the Long-term Behavior of Shear Wall (전단벽의 장기거동 특성에 관한 실험적 연구)

  • 권승희;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.197-202
    • /
    • 2001
  • It is necessary to Investigate long-term behavior of vertical members such as column and shear wall because the long-term behavior induces the serviceability problem of reinforce-concrete structures. However, the long-term behavior on shear wall has not been fully studied. Experimental works are performed to understand the time dependent behavior of shear wall, especially the effect of loading area in this research. Three different types of cross sections are adopted, i.e., 10$\times$10 cm, 10$\times$30 cm, and 10$\times$50 cm with the same loading area of 10$\times$10 cm. The creep strains were different from point to point in the section of the shear wall specimen because of the nonlinear stress distribution. The effect of the nonlinear stress distribution was larger in the specimen with the larger width.

  • PDF

The Workload Distribution Problems in a Class of Flexible Manufacturing Systems

  • Kim, Sung-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.15 no.1
    • /
    • pp.65-75
    • /
    • 1989
  • This study complements the previous studies on workload distribution problems in Flexible Manufacturing Systems. Specifically, we consider the problem in two perspectives, the long-range policy and the short and medium-term planning and control. The long-term loading policy focusses on identifying the optimal loading of the system characterized by either balanced loading or unique unbalanced loading for which a steepest ascent method is developed. These results are then applied to study the optimal medium and short-term planning and control problems, for which a truncated dynamic programming method is developed in order to obtain the optimal allocation of the given operation mix of part types to work stations.

  • PDF

Long-term simulation of wind turbine structure for distributed loading describing long-term wind loads for preliminary design

  • Ibrahimbegovic, Adnan;Boujelben, Abir
    • Coupled systems mechanics
    • /
    • v.7 no.2
    • /
    • pp.233-254
    • /
    • 2018
  • In order to reduce the dependency on fossil fuels, a policy to increase the production capacity of wind turbine is set up. This can be achieved with increasing the dimensions of offshore wind turbine blades. However, this increase in size implies serious problems of stability and durability. Considering the cost of large turbines and financial consequences of their premature failure, it is imperative to carry out numerical simulations over long periods. Here, an energy-conserving time-stepping scheme is proposed in order to ensure the satisfying computation of long-term response. The proposed scheme is implemented for three-dimensional solid based on Biot strain measures, which is used for modeling flexible blades. The simulations are performed at full spatial scale. For reliable design process, the wind loads should be represented as realistically as possible, including the fluid-structure interaction (FSI) dynamic effects on wind turbine blades. However, full-scale 3D FSI simulations for long-term wind loading remain of prohibitive computation cost. Thus, the model to quantify the wind loads proposed here is a simple, but not too simple to be representative for preliminary design studies.

The Effect of Cyclic Loading History on the Creep of $SiC_f/Si_3N_4$ Fiber-reinforced Composite (사이클 하중이력이 $SiC_f/Si_3N_4섬유강화 복합재료의 크리프에 미치는 영향)

  • 박용환
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.35-40
    • /
    • 2000
  • The influence of cyclic loading history on the creep behavior of the 30 vol% hot-pressed $SiC_f/Si_3N_4copmposite was experimentally investigated at $1200^{\circ}C$. The duration of loading/unloading had great effects on the creep behaviors. The short term duration cyclic loading history test results showed significant reduction in the primary and steady-state creep rates. For example, 300sec loading/300sec unloading history resulted in 70% lower steady-state creep rate than that of the continuous loading. However the long term duration cyclic loading history test results showed little change in creep rates compared to those of the continuous one. The reason for the significant change in the short term duration cycles was estimated due to the change in the stress redistribution between the fiber and matrix during the creep recovery in the primary stage.

  • PDF