1 |
Ahlstrm, A. (2006), "Influence of wind turbine flexibility on loads and power production", Wind Energy, 9, 237-249.
DOI
|
2 |
Boujelben, A. and Ibrahimbegovic, A. (2016), "Finite-strain three-dimensional solids with rotational degrees of freedom: Non-linear statics and dynamics", Adv. Model. Simul. Eng. Sci., 4, 646-654.
|
3 |
Spera, A.D. (1998), Wind Turbine Technology, Fundamental Concepts in Wind Turbine Engineering, ASME Press, New York, U.S.A.
|
4 |
Ibrahimbegovic, A. (1995), "On finite element implementation of geometrically nonlinear Reissners beam theory: Three-dimensional curved beam elements", Comput. Meth. Appl. Mech. Eng., 122, 11-26.
DOI
|
5 |
Ibrahimbegovic, A. (1997), "On the choice of finite rotation parameters", J. Numer. Meth. Eng., 149, 4971.
|
6 |
Ibrahimbegovic, A. (2009), Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods, Springer Science and Business Media.
|
7 |
Ibrahimbegovic, A. and Mamouri, S. (2002), "Energy conserving/decaying implicit time-stepping scheme for nonlinear dynamics of three-dimensional beams undergoing finite rotations.", Comput. Struct., 70, 1-20.
|
8 |
Ibrahimbegovic, A., Kassiotis, C. and Niekamp, R. (2016), "Fluid-structure interaction problems solution by operator split methods and efficient software development by code-coupling", Coupled Syst. Mech., 5, 145-156.
DOI
|
9 |
Sanderse, B., Van Der Pijl, S.P. and Koren, B. (2011), "Review of computational fluid dynamics for wind turbine wake aerodynamics", Wind Energy, 14, 799-819.
DOI
|
10 |
Hau, E. (2006), Wind Turbines: Fundamentals, Technologies, Application, Economics, 2nd Edition, Springer.
|
11 |
Lefrancois, E. (2017), "How an added mass matrix estimation may dramatically improve FSI calculations for moving foils", Appl. Math. Model., 51, 655-668.
DOI
|
12 |
Wilson, E.L. and Ibrahimbegovic, A. (1990), "Use of incompatible displacement modes for the calculation of element stiffnesses or stresses", Fin. Elem. Analy. Des., 7, 229-241.
DOI
|
13 |
European Commission (2017), Renewable Energy Progress Report, Brussels, February.
|
14 |
Cottet, G.H. and Koumoutsakos, P.D. (2000), Vortex Methods: Theory and Practice, Cambridge University Press, New York, U.S.A.
|
15 |
Imamovic, I., Ibrahimbegovic, A., Knopf-Lenoir, C. and Mesic, E. (2015), "Plasticity-damage model parameters identification for structural connections", Coupled Syst. Mech., 4, 337-364.
DOI
|
16 |
Simo, J.C. and Vu-Quoc, L. (1986), "A three-dimensional finite strain rod model. Part II: Geometric and computational aspects", Comput. Meth. Appl. Mech. Eng., 58, 79-116.
DOI
|
17 |
Jonkman, J., Butterfield, S., Musial, W. and Scott, G. (2005), Definition of a 5-MW Reference Wind Turbine for Offshore System Development, Technical Report NREL/TP-500-38060, National Renewable Energy Laboratory, Golden, CO.
|
18 |
Simo, J.C., Taylor, R.L. and Wiggers, P. (1991), "A note on finite element implementation of pressure boundary loading", Appl. Numer. Meth., 7, 513-525.
DOI
|
19 |
Webb, C. (2012), Wind Turbine Blades Push Size Limits, Renewable Energy World, July.
|
20 |
Anderson, J.D. and Wendt, J. (1995), Computational Fluid Dynamics, McGraw-Hill, New York, U.S.A.
|
21 |
Katz, J. and Plotkin, A. (1991), Low-Speed Aerodynamics. From Wing Theory to Panel Methods, McGraw Hill, New York, U.S.A.
|
22 |
Biot, M.A. (1965), Mechanics of Incremental Deformations, John Wiley, London, U.K.
|
23 |
Jonkman, J.M. and Matha, D. (2011), "Dynamics of offshore floating wind turbines analysis of three concepts", Wind Energy, 14, 557-569.
DOI
|
24 |
Rocca, J., Ibrahimbegovic, A. and Limnios, N. (2017), "Stochastic averaging for long-term response of dynamic systems", UTC Report, 1-15.
|
25 |
Spring, K.V. (1986), "Euler parameters and the use of quaternion algebra in the manipulation of finite rotations", Mech. Mach. Theor., 21, 365-373.
DOI
|
26 |
Hansena, M.O.L., Srensena, J.N., Voutsinasb, S., Srensenc, N. and Madsenc, H.A. (2006), "State of the art in wind turbine aerodynamics and aero elasticity", Progr. Aerosp. Sci., 42, 285-330.
DOI
|
27 |
Law, S.P. and Gregorek, G.M. (1987), Wind Tunnel Evaluation of a Truncated NACA 64-621 Airfoil for Wind Turbine Applications, Technical Report, Ohio State University, Columbus, OH, U.S.A.
|
28 |
Zienkiewicz, O.C. and Taylor, R.L. (1989), The Finite Element Method: Basic Formulation and Linear Problems, Vol. I, McGraw-Hill, Maidenhead, U.K.
|
29 |
Thresher, R.W., Wright, A.D. and Hershberg, E.L. (1986), "A computer analysis of wind turbine blade dynamic loads", ASME J. Sol. Energy Eng., 108, 17-25.
DOI
|
30 |
Breton, S.P. and Moe, G. (2009), "Status, plans and technologies for offshore wind turbines in Europe and North America", Renew. Energy, 34, 3-27.
|
31 |
Hsu, S.A., Meindl, E.A. and Gilhousen, D.B. (1994), "Determining the Power-law wind-profile exponent under near-neutral stability conditions at sea", J. Appl. Meteorol. Climatol., 33, 757-765.
DOI
|
32 |
Siemens AG, Energy Sector (2011), Siemens Wind Turbine SWT-2.3-108: The New Productivity Benchmark, Technical Report.
|
33 |
Bazilevs, Y., Hsu, M.C., Kiendl, J., Wchner, R. and Bletzinger, K.U. (2011), "3D simulation of wind turbine rotors at full scale. Part II: Fluid structure interaction modeling with composite blades", J. Numer. Meth. Flu., 65, 236-253.
DOI
|
34 |
Do, X.N., Ibrahimbegovic, A. and Brancherie, D. (2015a), "Combined hardening and localized failure with softening plasticity in dynamics", Coupled Syst. Mech., 4, 115-136.
DOI
|
35 |
Do, X.N., Ibrahimbegovic, A. and Brancherie, D. (2015b), "Localized failure in damage dynamics", Coupled Syst. Mech., 4, 211-235.
DOI
|
36 |
Bazilevs, Y. and Hsu, M.C. (2012), "ALE-VMS and ST-VMS methods for computer modeling of wind turbine rotor aerodynamics and fluid-structure interaction", Math. Model. Meth. Appl. Sci., 22, 1-62.
|