DOI QR코드

DOI QR Code

A finite element model for long-term analysis of timber-concrete composite beams

  • Fragiacomo, M. (Department of Civil Engineering, University of Trieste)
  • Received : 2003.11.19
  • Accepted : 2005.03.17
  • Published : 2005.05.30

Abstract

The paper presents a finite element model for studying timber-concrete composite beams under long-term loading. Both deformability of connection system and rheological behaviour of concrete, timber and connection are fully considered. The creep of component materials and the influence of moisture content on the creep of timber and connection, the so-called "mechano-sorptive" effect, are evaluated by means of accurate linear models. The solution is obtained by applying an effective step-by-step procedure in time, which does not require storing the whole stress history in some points in order to account for the creep behaviour. Hence the proposed method is suitable for analyses of composite beams subjected to complex loading and thermo-hygrometric histories. The possibility to accurately predict the long-term response is then shown by comparing numerical and experimental results for different tests.

Keywords

References

  1. Al-Amery, R.I.M. and Roberts, T.M. (1990), 'Nonlinear finite difference analysis of composite beams with partial interaction', Comput. Struct., 35(1), 81-87 https://doi.org/10.1016/0045-7949(90)90258-4
  2. Amadio, C. and Fragiacomo, M. (1993), 'A finite element model for the study of creep and shrinkage effects in composite beams with deformable shear connection', Costruzioni Metalliche, 4, 213-228
  3. Amadio, C., Fragiacomo, M., Ceccotti, A. and Di Marco, R. (2001), 'Long-term behaviour of a timber-concrete connection system', Proc. of the RILEM Conf. 'Joints in Timber Structures ', Stuttgart, September, 263-272
  4. Betti, R. and Gjelsvik, A. (1996), 'Elastic composite beams', Comput. Struct., 59(3), 437-451 https://doi.org/10.1016/0045-7949(95)00275-8
  5. Bonamini, G, Uzielli, L. and Ceccotti, A. (1990), 'Short- and long-term experimental tests on antique larch and oak wood-concrete composite elements', Proc. of the C.T.E. Conference, Bologna, 241-251 (in Italian)
  6. Capretti, S. (1992), 'Time dependent analysis of timber and concrete composit (TCC) structures', Proc. of the RILEM Intern. Symposium on 'Behaviour of Timber and Concrete Composite Load-bearing Structures ', Ravenna, June 27
  7. Ceccotti, A. and Covan, C. (1990), 'Behaviour of timber and concrete composite load-bearing structures', Proc. of the IUFRO S.02 Conf. on Timber Engineering, Saint John, New Brunswick, August
  8. Ceccotti, A. (1995), 'Timber-concrete composite structures', Timber Engineering, Step 2, First Edition, Centrum Hout, The Netherlands, E13/1-E13/12
  9. Chiorino, M.A., Napoli, P., Mola, F. and Koprna, M. (1984), 'Structural effects of time-dependent behaviour of concrete', CEB Bull. No. 142/142 Bis, Georgi Publishing Company, Saint-Saphorin
  10. Comite Euro-International du Beton (1993), 'CEB-FIP Model Code 90', CEB Bull. No. 213/214, Lausanne
  11. Comite Europeen de Normalisation (1995), 'Eurocode 5 - Design of Timber Structures - Part 1-1: General Rules and Rules for Buildings', ENV 1995-1-1, Bruxelles
  12. Comite Europeen de Normalisation (1996), 'Eurocode 5 - Design of Timber Structures - Part 2: Bridges', ENV 1995-2', Bruxelles.
  13. Dall'Asta, A. and Zona, A. (2002), 'Non-linear analysis of composite beams by a displacement approach', Comput. Struct., 80(27-30), 2217-2228 https://doi.org/10.1016/S0045-7949(02)00268-7
  14. Fragiacomo, M. (2000), 'Long-term behavior of timber-concrete composite beams', Ph.D. Thesis, University of Trieste, Italy (in Italian)
  15. Fragiacomo, M., Amadio, C. and Macorini, L. (2004), 'A finite element model for collapse and long-term analysis of steel-concrete composite beanls', J. Struct. Eng., 130(3), 489-497 https://doi.org/10.1061/(ASCE)0733-9445(2004)130:3(489)
  16. Fridley, K.J., Rosowsky, D.V. and Hong, P. (1997), 'Time-dependent service-load behavior of wood floors: Analytical model', Comput. Struct., 66(6), 847-860 https://doi.org/10.1016/S0045-7949(97)00074-6
  17. Gattesco, N. (1999), 'Analytical modeling of nonlinear behaviour of composite beams with deformable connection', J. Constructional Steel Research, 121(2), 319-327
  18. Hanhijarvi, A. (1995a), 'Deformation kinetics based rheological model for the time-dependent and moisture induced deformation of wood', Wood Science and Technology, 29, 191-199
  19. Hanhijarvi, A. (l995b), 'Modelling of creep deformation mechanisms in wood', Ph.D. Thesis, VTT Publication 231, Technical Research Centre of Finland
  20. Hoyle, R.J., Itani, J.K. and Eckard, J.J. (1986), 'Creep of douglas fir beams due to cyclic humidity fluctuations', Wood and Fiber Sci., 18(3), 468-477
  21. Incropera, F.P. and De Witt, D.P. (1985), Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York
  22. Kuhlmann, U. and Schanzlin, J. (2001), 'Composite of vertically laminated timber decks and concrete', Proc. of the IABSE Conf. 'Innovative Wooden Structures and Bridges', Lahti, Finland, 507-512
  23. Kwak, H.-G. and Seo, Y.-J. (2000), 'Long-term behavior of composite girder bridges', Comput. Struct., 74(5), 583-599 https://doi.org/10.1016/S0045-7949(99)00064-4
  24. Lacidogna, G. (1994), 'Mathematical modeling of the viscoelastic behavior of concrete', Ph.D. Thesis, Polytechnic of Turin, Italy (in Italian)
  25. Manfredi, G., Fabbrocino, G. and Cosenza, E. (1999), 'Modeling of steel-concrete composite beams under negative bending', J. Eng. Mech., 125(6), 654-662 https://doi.org/10.1061/(ASCE)0733-9399(1999)125:6(654)
  26. Newmark, N.M., Siess, C.P. and Viest, I.M. (1951), 'Tests and analysis of composite beams with incomplete interaction', Proc. of Society for Experimental Stress Analysis
  27. Ranta Maunus, A. (1975), 'The viscoelasticity of wood at varying moisture content', Wood Science and Technology, 9, 189-205 https://doi.org/10.1007/BF00364637
  28. Said, E.B., Jullien, J.-F. and Siemers, M. (2002), 'Non-linear analyses of local composite timber-concrete behaviour', Proc. of the 7th World Conf. on Timber Engineering, WCTE 2002, Shah Alam, Malaysia, August, 1, 183-191
  29. Salari, M.R., Spacone, E., Shing, P.B. and Frangopol, D.M. (1998), 'Nonlinear analysis of composite beams with deformable shear connectors', J. Struct. Eng, 124(10), 1148-1158 https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1148)
  30. Spacone, E. and El-Tawil, S. (2004), 'Nonlinear analysis of steel-concrete composite structures: State of the art', J. Struct. Eng., 130(2), 159-168 https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(159)
  31. Toratti, T. (1992), 'Creep of timber beams in a variable environment', Report No. 31, Laboratory of Structural Eng. and Building Physics, Helsinki University of Technology

Cited by

  1. Timber composite beams with a discrete connection system vol.166, pp.2, 2013, https://doi.org/10.1680/stbu.11.00007
  2. Experimental evidence for effective flexural-only stiffnesses to account for nonlinear flexural-slip behaviour of timber-concrete composite sections vol.149, 2017, https://doi.org/10.1016/j.conbuildmat.2017.04.082
  3. Strength analysis of chair base from wood plastic composites by finite element method vol.11, pp.3, 2007, https://doi.org/10.1179/143307507X225623
  4. Mechanical behavior of connections for glubam-concrete composite beams vol.143, 2017, https://doi.org/10.1016/j.conbuildmat.2017.03.136
  5. Short- and long-term performance of the “Tecnaria” stud connector for timber-concrete composite beams vol.40, pp.10, 2007, https://doi.org/10.1617/s11527-006-9200-2
  6. Simplified nonlinear model for timber-concrete composite beams vol.117, 2016, https://doi.org/10.1016/j.ijmecsci.2016.07.019
  7. The effect of rotatory inertia on the natural frequencies of composite beams vol.366, 2016, https://doi.org/10.1016/j.jsv.2015.12.004
  8. Three-Dimensional Modeling of Long-Term Structural Behavior of Wood-Concrete Composite Beams vol.140, pp.8, 2014, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000909
  9. Calculation model to assess the structural behavior of LVL-concrete composite members with ductile notched connection vol.153, 2017, https://doi.org/10.1016/j.engstruct.2017.10.024
  10. Long-Term Behavior of Prestressed LVL Members. II: Analytical Approach vol.137, pp.12, 2011, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000410
  11. State of the Art on Timber-Concrete Composite Structures: Literature Review vol.137, pp.10, 2011, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000353
  12. Long-Term Behavior of Wood-Concrete Composite Floor/Deck Systems with Shear Key Connection Detail vol.133, pp.9, 2007, https://doi.org/10.1061/(ASCE)0733-9445(2007)133:9(1307)
  13. Coupled finite element-finite difference formulation for long-term analysis of timber–concrete composite structures vol.96, 2015, https://doi.org/10.1016/j.engstruct.2015.03.047
  14. Experimental Analysis of the Structural Behavior of Timber-Concrete Composite Slabs made of Beech-Laminated Veneer Lumber vol.28, pp.6, 2014, https://doi.org/10.1061/(ASCE)CF.1943-5509.0000552
  15. Mechanical behaviour of pre-stressed spruce timber–timber 2.5-mm-step grooved connections under shearing tests vol.75, pp.5, 2017, https://doi.org/10.1007/s00107-016-1135-x
  16. Long-Term Behavior of Timber–Concrete Composite Beams. I: Finite Element Modeling and Validation vol.132, pp.1, 2006, https://doi.org/10.1061/(ASCE)0733-9445(2006)132:1(13)
  17. Experimental behaviour of a full-scale timber-concrete composite floor with mechanical connectors vol.45, pp.11, 2012, https://doi.org/10.1617/s11527-012-9869-3
  18. Full-scale long-term experiments of simply supported composite beams with solid slabs vol.67, pp.3, 2011, https://doi.org/10.1016/j.jcsr.2010.11.001
  19. Finite-Element Modeling of Short-Term Field Response of Composite Wood-Concrete Floors/Decks vol.136, pp.6, 2010, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000117
  20. Deconstructable timber-concrete composite beams with panelised slabs: Finite element analysis vol.163, 2018, https://doi.org/10.1016/j.conbuildmat.2017.12.169
  21. Long-term and collapse tests on a timber-concrete composite beam with glued-in connection vol.40, pp.1, 2007, https://doi.org/10.1617/s11527-006-9094-z
  22. A force-based frame finite element formulation for analysis of two- and three-layered composite beams with material non-linearity vol.62, 2014, https://doi.org/10.1016/j.ijnonlinmec.2014.02.001
  23. Nonlinear finite element analysis of timber beams and joints using the layered approach and hypoelastic constitutive law vol.46, 2013, https://doi.org/10.1016/j.engstruct.2012.08.017
  24. Influence of the Construction Method on the Long-Term Behavior of Timber-Concrete Composite Beams vol.141, pp.10, 2015, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001247
  25. Full-scale long-term and ultimate experiments of simply-supported composite beams with steel deck vol.67, pp.10, 2011, https://doi.org/10.1016/j.jcsr.2011.04.010
  26. Experimental and Numerical Investigations of Groove Connections for a Novel Timber-Concrete-Composite System vol.28, pp.6, 2014, https://doi.org/10.1061/(ASCE)CF.1943-5509.0000549
  27. Composite Wood-Concrete Beams Using Utility Poles: Time-Dependent Behavior vol.137, pp.6, 2011, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000293
  28. Long-Term Behavior of Timber–Concrete Composite Beams. II: Numerical Analysis and Simplified Evaluation vol.132, pp.1, 2006, https://doi.org/10.1061/(ASCE)0733-9445(2006)132:1(23)
  29. Wood-Concrete and Wood-Wood Mixed Beams: Rational Basis for Selecting Connections vol.134, pp.3, 2008, https://doi.org/10.1061/(ASCE)0733-9445(2008)134:3(440)
  30. Fire Design of Timber-Concrete Composite Slabs with Screwed Connections vol.136, pp.2, 2010, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000101
  31. 08.27: Steel-timber composite (STC) beams: Numerical simulation of long-term behaviour vol.1, pp.2-3, 2017, https://doi.org/10.1002/cepa.250
  32. Development of prefabricated timber–concrete composite floor systems vol.164, pp.2, 2011, https://doi.org/10.1680/stbu.10.00010
  33. Long-term performance of adhesively bonded timber-concrete composites vol.72, 2017, https://doi.org/10.1016/j.ijadhadh.2016.10.005
  34. Experimental and Numerical Investigations of Fire Resistance of Novel Timber-Concrete-Composite Decks vol.28, pp.6, 2014, https://doi.org/10.1061/(ASCE)CF.1943-5509.0000539
  35. Laboratory Tests and Numerical Analyses of Prefabricated Timber-Concrete Composite Floors vol.136, pp.1, 2010, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000080
  36. Prefabricated timber-concrete composite floors vol.74, pp.3, 2016, https://doi.org/10.1007/s00107-016-1007-4
  37. Nonlinear Long-Term Analysis of Timber-Concrete Composite Structures with Finite Element-Finite Difference Scheme vol.553, pp.1662-7482, 2014, https://doi.org/10.4028/www.scientific.net/AMM.553.618
  38. Design Approach to Predict Post-Tensioning Losses in Post-Tensioned Timber Frames vol.144, pp.8, 2018, https://doi.org/10.1061/(ASCE)ST.1943-541X.0002101
  39. Bolt shear connectors in grout pockets: Finite element modelling and parametric study vol.176, pp.None, 2018, https://doi.org/10.1016/j.conbuildmat.2018.05.029
  40. Analytical derivation of the effective creep coefficients for timber-concrete composite structures vol.172, pp.None, 2005, https://doi.org/10.1016/j.engstruct.2018.05.056
  41. Long-Term Performance Assessment of an Operative Post-Tensioned Timber Frame Structure vol.145, pp.5, 2005, https://doi.org/10.1061/(asce)st.1943-541x.0002308
  42. Experimental and Analytical Investigations on Short-Term Behavior of Glubam-Concrete Composite Beams vol.146, pp.3, 2005, https://doi.org/10.1061/(asce)st.1943-541x.0002517
  43. A Calculation Method for Interconnected Timber Elements Using Wood-Wood Connections vol.10, pp.3, 2020, https://doi.org/10.3390/buildings10030061
  44. Capacity and Failure-Mode Prediction of Mass Timber Panel-Concrete Composite Floor System with Mechanical Connectors vol.147, pp.2, 2021, https://doi.org/10.1061/(asce)st.1943-541x.0002909
  45. Long-term coupled analysis of steel-timber composite (STC) beams vol.278, pp.None, 2005, https://doi.org/10.1016/j.conbuildmat.2021.122348
  46. Modelagem numérica comparativa da ponte Florestinha, construída em madeira e concreto vol.21, pp.3, 2005, https://doi.org/10.1590/s1678-86212021000300552