• Title/Summary/Keyword: long baselines

Search Result 21, Processing Time 0.029 seconds

Performance Analysis of Long Baseline Relative Positioning using Dual-frequency GPS/BDS Measurements

  • Choi, Byung-Kyu;Yoon, Ha Su;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.2
    • /
    • pp.87-94
    • /
    • 2019
  • The Global Navigation Satellite System (GNSS) Real-Time Kinematic (RTK) positioning has been widely used in geodesy, surveying, and navigation fields. RTK can benefit enormously from the integration of multi-GNSS. In this study, we develop a GPS/BeiDou Navigation Satellite System (BDS) RTK integration algorithm for long baselines ranging from 128 km to 335 km in South Korea. The positioning performance with GPS/BDS RTK, GPS-only RTK, and BDS-only RTK is compared in terms of the positioning accuracy. An improvement of positioning accuracy over long baselines can be found with GPS/BDS RTK compared with that of GPS-only RTK and that of BDS-only RTK. The positioning accuracy of GPS/BDS RTK is better than 2 cm in the horizontal direction and better than 5 cm in the vertical direction. A lower Relative Dilution of Precision (RDOP) value with GPS/BDS integration can obtain a better positional precision for long baseline RTK positioning.

Long Baseline GPS RTK with Estimating Tropospheric Delays

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.3
    • /
    • pp.123-129
    • /
    • 2014
  • The real-time kinematic (RTK) is one of precise positioning methods using Global Positioning System (GPS) data. In the long baseline GPS RTK, the ionospheric and tropospheric delays are critical factors for the positioning accuracy. In this paper we present RTK algorithms for long baselines more than 100 km with estimating tropospheric delays. The state vector is estimated by the extended Kalman filter. We show the experimental results of GPS RTK for various baselines (162.10, 393.37, 582.29, and 1283.57 km) by using the Korea Astronomy and Space Science Institute GPS data and one International GNSS Service (IGS) reference station located in Japan. As a result, we present that long baseline GPS RTK can provide the accurate positioning for users less than few centimeters.

Amplitude Correction Factors of KVN Observations Correlated by DiFX and Daejeon Correlators

  • Lee, Sang-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.54.1-54.1
    • /
    • 2015
  • We report results of investigation of amplitude calibration for very long baseline interferometry (VLBI) observations with Korean VLBI Network (KVN). Amplitude correction factors are estimated based on comparison of KVN observations at 22 GHz correlated by Daejeon hardware correlator and DiFX software correlator in Korea Astronomy and Space Science Institue (KASI) with Very Long Baseline Array (VLBA) observations at 22 GHz by DiFX software correlator in National Radio Astronomy Observatory (NRAO). We used the observations for compact radio sources, 3C 454.3 and NRAO 512 which are almost unresolved for baselines in a range of 350-477 km. VLBA visibility data of the sources observed with similar baselines as KVN are selected, fringe-fitted, calibrated, and compared in their amplitudes. We found that visibility amplitudes of KVN observations should be corrected by factors of 1.14 and 1.40 when correlated by DiFX and Daejeon correlators, respectively. These correction factors are attributed to the combination of two steps of 2-bit quantization in KVN observing systems and characteristics of Daejeon correlator.

  • PDF

Studying the Ephemeris Effect on Position Accuracy Based on Criteria Applied to Baseline Lengths by New MATLAB Program (NMP)

  • Shimaa Farouk;Mahmoud El-Nokrashy;Ahmed Abd-Elhay;Nasr Saba
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.113-122
    • /
    • 2023
  • Although the Relative Global Navigation Satellite System (GNSS) positioning technique provides high accuracy, it has several drawbacks. The scarcity of control points, the long baselines, and using of ultra-rabid and rabid products increased position errors. This study has designed a New MATLAB Program that helps users automatically select suitable IGS stations related to the baseline lengths and the azimuth between GNSS points and IGS stations. This study presented criteria for the length of the baselines used in Egypt and an advanced estimated accuracy before starting the project. The experimental test studies the performance of the position accuracy related to the relation between three factors: observation session, final, rabid, and ultrarabid products, and the baseline lengths. Ground control point mediates Egypt was selected as a test point. Nine surrounding IGS stations were selected as reference stations, and the coordinates of the tested point were calculated based on them. Baselines between the tested point and the IGS stations were classified regarding proposal criteria. The coordinates of the tested point were obtained in different observation sessions (0.5, 1, 2, 4, 5, 6, 7, 7.5 h). The results indicated that the lengths of the baseline in Egypt were classified short (less than 600 km), medium (600-1,200 km), and long (greater than 1,200 km) and required a minimum observation time of 4, 5, and 7 h to obtain accuracy 10, 19, 48 mm sequentially. The position accuracy was superior for the rapid and the final than the ultra-rapid products by 16%. A short baseline was at the best case; there was a performance in position accuracy with a 57% deduction in observation time compared with the long baseline.

MEASURING THE CORE SHIFT EFFECT IN AGN JETS WITH THE EXTENDED KOREAN VLBI NETWORK

  • JUNG, TAEHYUN;DODSON, RICHARD;HAN, SEOG-TAE;RIOJA, MARIA J.;BYUN, DO-YOUNG;HONMA, MAREKI;STEVENS, JAMIE;VICENTE, PABLO DE;SOHN, BONG WON
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.5
    • /
    • pp.277-284
    • /
    • 2015
  • We present our efforts for extending the simultaneous multi-frequency receiver system of the Korean Very Long Baseline Interferometry (VLBI) Network (KVN) to global baselines in order to measure the frequency-dependent position shifts in Active Galactic Nuclei (AGN) jets, the so called core shift effect, with an unprecedented accuracy (a few micro-arcseconds). Millimeter VLBI observations with simultaneous multi-frequency receiver systems, like those of the KVN, enable us to explore the innermost regions of AGN and high precision astrometry. Such a system is capable of locating the frequency dependent opacity changes accurately. We have conducted the feasibility test-observations with the interested partners by implementing the KVN-compatible systems. Here we describe the science case for measuring the core shift effect in the AGN jet and report progress and future plans on extending the simultaneous multi-frequency system to global baselines.

AMPLITUDE CORRECTION FACTORS OF KOREAN VLBI NETWORK OBSERVATIONS

  • LEE, SANG-SUNG;BYUN, DO-YOUNG;OH, CHUNG SIK;KIM, HYO RYOUNG;KIM, JONGSOO;JUNG, TAEHYUN;OH, SE-JIN;ROH, DUK-GYOO;JUNG, DONG-KYU;YEOM, JAE-HWAN
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.5
    • /
    • pp.229-236
    • /
    • 2015
  • We report results of investigation of amplitude calibration for very long baseline interferometry (VLBI) observations with Korean VLBI Network (KVN). Amplitude correction factors are estimated based on comparison of KVN observations at 22 GHz correlated by Daejeon hardware correlator and DiFX software correlator in Korea Astronomy and Space Science Institute (KASI) with Very Long Baseline Array (VLBA) observations at 22 GHz by DiFX software correlator in National Radio Astronomy Observatory (NRAO). We used the observations for compact radio sources, 3C 454.3, NRAO 512, OJ 287, BL Lac, 3C 279, 1633+382, and 1510–089, which are almost unresolved for baselines in a range of 350-477 km. Visibility data of the sources obtained with similar baselines at KVN and VLBA are selected, fringe-fitted, calibrated, and compared for their amplitudes. We find that visibility amplitudes of KVN observations should be corrected by factors of 1.10 and 1.35 when correlated by DiFX and Daejeon correlators, respectively. These correction factors are attributed to the combination of two steps of 2-bit quantization in KVN observing systems and characteristics of Daejeon correlator.

On Study of the Very Long Baseline Processing using Bernese (Bernese를 이용한 장기선 처리에 대한 연구)

  • 최윤수;고준환;전철민;이기도
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2002.04a
    • /
    • pp.103-118
    • /
    • 2002
  • There are many GPS software packages and this document compared the result of baseline processing by Bernese GPS software with it by GPSurvey software. This paper also analyzed the results and investigated considerations when very long baselines are processed. There are rarely differences which is accompanied by baseline distance when it is processed by Bernese GPS software but there are somewhat differences which is accompanied by baseline distance when it is processed by GPSurvey software.

  • PDF

A Study on the Long Baseline Processing for GPS Surveying (GPS 장기선 해석에 관한 기초 연구)

  • 최윤수;고준환;이기도
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.2
    • /
    • pp.123-129
    • /
    • 2003
  • This study analyzed and compared the results of baseline processing by Bernese GPS software packages and by GPSurvey software respectively. Then it investigated considerations when very long baselines are processed. There are rarely differences which is accompanied by baseline length when it is processed by Bernese GPS software but there are somewhat differences in proportion to the baseline length when it is processed by GPSurvey software.

Maintaining the Authenticity of Electronic Records in the Electronic Records Management Systems (전자기록의 진본성 유지를 위한 전략)

  • Suh, Hye-Ran;Seo, Eun-Gyoung;Lee, So-Yeon
    • Journal of the Korean Society for information Management
    • /
    • v.20 no.2
    • /
    • pp.241-261
    • /
    • 2003
  • The electronic records management systems must create and maintain reliable and authentic records because such records can be easily duplicated, manipulated, altered, and revised. The goal of this study is to propose the strategies for maintainning authenticity of electronic records and to produce some baselines for developing the strategies for maintaining authenticity of electronic records and to produce some baselines for developing the trusted record management sytems. Therefore, the study is to identify and define the concept of an electronic record and the nature of authenticity; to estabilish the principles for ensuring the long-term preservation of authentic electronic records; to suggest the methods for describing electronic records in order to maintain audit trail; to suggest the methods for describing electronic records in order to maintain audit ; to propose the mechanisms for maintaining reliable and authentic electronic records; to analyse the Korean standards related to electronic document management systems; and to discuss future challenges for maintaining the authenticity.

An Integer Ambiguity Resolution Method for GPS Attitude Determination (GPS를 이용한 자세 측정 시스템의 미지정수 결정기법)

  • 박찬식;김일선
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.1
    • /
    • pp.62-68
    • /
    • 1999
  • The attitude of a vehicle can be precisely determined using GPS carrier phase measurements from more than two antennas attached to a vehicle and an efficient integer ambiguity resolution technique. Many methods utilizing the known baseline length as a constraint of independent elements of integer ambiguities are proposed to resolve integer ambiguity at real time. Three-dimensional search space is reduced to two-dimensional search space with this constraint. Thus the true integer ambiguity can be easily determined with less computational burden and fewer number of measurements. But there are still strong requirements for the real time integer ambiguity resolution, which uses single epoch measurement of long baseline. In this paper, a new constraint from the geometry of multiple baselines is derived. With this new constraint, two-dimensional search space is further reduced to one-dimensional search space. It makes possible to determine integer ambiguity with single epoch measurement. The proposed method is applied to real data to show its effectiveness.

  • PDF