Acknowledgement
The authors acknowledge the cooperation and express their sincere appreciation and gratitude to the National Oceanic and Atmospheric Administration (NOAA) for their valuable contributions to this research. Their data and resources have been instrumental in the success of this study.
References
- Bakula M, Uradzinski M, Krasuski K, Performance of DGPS smartphone positioning with the use of P(L1) vs. P(L5) pseudorange measurements, Remote Sens. 14, 929 (2022). https://doi.org/10.3390/rs14040929
- Chu FY, Yang M, GPS/Galileo long baseline computation: method and performance analyses, GPS Solut. 18, 263-272 (2014). https://doi.org/10.1007/s10291-013-0327-7
- Chyad H, Al-Saedi FA, A novel aircraft and missile accurate positioning and tracking system for military and intelligence using global satellite networks, AAIA J. 25, 0891-0899 (2018). https://doi.org/10.2514/6.2018-0891
- Dawooda ESN, Mustafab MT, Alic AHA, Predicted geodetic reference system for Baghdad city with aided international terrestrial reference frame (ITRF08), Am. Sci. Res. J. Eng. Technol. Sci. 54, 97-110 (2019).
- Elshambaky HT, Kaloop MR, Hu JW, A novel three-direction datum transformation of geodetic coordinates for Egypt using artificial neural network approach, Arab J. Geosci. 11, 110 (2018). https://doi.org/10.1007/s12517-018-3441-6
- Fischer A, Cellmer S, Nowel K, Single point positioning with vertical total electron content estimation based on single-epoch data, Geosci. Instrum. Methods Data Syst. 10, 1-12 (2021). https://doi.org/10.5194/gi-10-1-2021
- Fusic SJ, Sugumari T, A review of perception-based navigation system for autonomous mobile robots, Recent Pat. Eng. 17, 13-22 (2023). https://doi.org/10.2174/1872212117666220929142031
- Gillins DT, Eddy MJ, Comparison of GPS height modernization surveys using OPUS-Projects and following NGS-58 guidelines, J. Surv. Eng. 143, 05016007 (2016). https://doi.org/10.1061/(ASCE)SU.1943-5428.0000196
- Gong X, Lou Y, Liu W, Zheng F, Gu S, et al., Rapid ambiguity resolution over medium-to-long baselines based on GPS/BDS multi-frequency observables, Adv. Space Res. 59, 794-803 (2017). https://doi.org/10.1016/j.asr.2016.07.011
- Google Maps (nd) [Internet], viewed 2020 Sep 22, available from: https://www.google.com/maps/place
- Hofmann-Wellenhof B, Lichtenegger H, Collins J, Global Positioning System: Theory and Practice (Springer-Verlag, Wien, 2001).
- Hou P, Zhang B, Yuan Y, Combined GPS+BDS instantaneous single- and dual-frequency RTK positioning: stochastic modelling and performance assessment, J. Spat. Sci. 66, 3-26 (2021). https://doi.org/10.1080/14498596.2018.1558117
- International Gnss Service [IGS]. Products (nd) [Internet], viewed 2020 Sep 22, available from: http://www.igs.org/products
- Liu X, Jiang W, Chen H, Zhao W, Huo L, et al., An analysis of intersystem biases in BDS/GPS precise point positioning, GPS Solut. 23, 116 (2019). https://doi.org/10.1007/s10291-019-0906-3
- Mayunga SD, Bokamoso R, Deformation monitoring of dam using GPS: case study Letsibogo dam, Botswana, J. Earth Sci. Eng. 9, 20-28 (2021). https://doi.org/10.17265/2159-581X/2021.01.004
- Meilano I, Susilo S, Sarsito D, Rapid magnitude estimation of the August 5, 2018, Lombok earthquake using high-rate GNSS data, Geomate J. 23, 57-65 (2022). https://doi.org/10.21660/2022.98.3438
- Montenbruck O, Steigenberger P, Prange L, Deng Z, Zhao Q, et al., The Multi-GNSS experiment (MGEX) of the international GNSS service (IGS): achievements, prospects and challenges, Adv. Space Res. 59, 1671-1697 (2017). https://doi.org/10.1016/j.asr.2017.01.011
- Rashwan KS, Saba N, Evaluation of EGM96 and EGM08 based on GPS/levelling heights in Egypt, South Afr. J. Geomat. 12, 44-55 (2023). https://doi.org/10.4314/sajg.v12i1.3
- Sarkar J, Rashid M, Visualizing the sample standard deviation, Educ. Res. Q. 40, 45-61 (2017).
- Stateczny A, Specht C, Specht M, Brcic D, Jugovic A, et al., Study on the positioning accuracy of GNSS/INS systems supported by DGPS and RTK receivers for hydrographic surveys, Energies 14, 7413 (2021). https://doi.org/10.3390/en14217413
- Tran DT, Nguyen DH, Luong ND, Dao DT, Impact of the precise ephemeris on accuracy of GNSS baseline in relative positioning technique, Vietnam J. Earth Sci. 43, 96-110 (2020). https://doi.org/10.15625/0866-7187/15745
- Verhagen AA, Joosten P, Algorithms for design computations for integrated GPS-Galileo, Proceedings of the European Navigation Conference, Graz, Austria, 22-25 Apr 2003.
- Yadav A, Kannaujiya S, Ray PKC, Yadav RK, Gautam PK, Estimation of crustal deformation parameters and strain build-up in Northwest Himalaya using GNSS data measurements, Contrib. Geophys. Geod. 51, 225-243 (2021). https://doi.org/10.31577/congeo.2021.51.3.2
- Zhang X, Zhu F, Zhang Y, Mohamed F, Zhou W, The improvement in integer ambiguity resolution with INS aiding for kinematic precise point positioning, J. Geod. 93, 993-1010 (2019). https://doi.org/10.1007/s00190-018-1222-3
- Zhao X, Wang S, Liu C, Ou J, Yu X, Assessing the performance of multi-GNSS precise point positioning in Asia-Pacific region, Surv. Rev. 49, 186-196 (2017). https://doi.org/10.1080/00396265.2016.1151576