• Title/Summary/Keyword: log Data Analysis

Search Result 969, Processing Time 0.035 seconds

Utilization of Log Data Reflecting User Information-Seeking Behavior in the Digital Library

  • Lee, Seonhee;Lee, Jee Yeon
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.1
    • /
    • pp.73-88
    • /
    • 2022
  • This exploratory study aims to understand the potential of log data analysis and expand its utilization in user research methods. Transaction log data are records of electronic interactions that have occurred between users and web services, reflecting information-seeking behavior in the context of digital libraries where users interact with the service system during the search for information. Two ways were used to analyze South Korea's National Digital Science Library (NDSL) log data for three days, including 150,000 data: a log pattern analysis, and log context analysis using statistics. First, a pattern-based analysis examined the general paths of usage by logged and unlogged users. The correlation between paths was analyzed through a χ2 analysis. The subsequent log context analysis assessed 30 identified users' data using basic statistics and visualized the individual user information-seeking behavior while accessing NDSL. The visualization shows included 30 diverse paths for 30 cases. Log analysis provided insight into general and individual user information-seeking behavior. The results of log analysis can enhance the understanding of user actions. Therefore, it can be utilized as the basic data to improve the design of services and systems in the digital library to meet users' needs.

A Method for Analyzing Web Log of the Hadoop System for Analyzing a Effective Pattern of Web Users (효과적인 웹 사용자의 패턴 분석을 위한 하둡 시스템의 웹 로그 분석 방안)

  • Lee, Byungju;Kwon, Jungsook;Go, Gicheol;Choi, Yonglak
    • Journal of Information Technology Services
    • /
    • v.13 no.4
    • /
    • pp.231-243
    • /
    • 2014
  • Of the various data that corporations can approach, web log data are important data that correspond to data analysis to implement customer relations management strategies. As the volume of approachable data has increased exponentially due to the Internet and popularization of smart phone, web log data have also increased a lot. As a result, it has become difficult to expand storage to process large amounts of web logs data flexibly and extremely hard to implement a system capable of categorizing, analyzing, and processing web log data accumulated over a long period of time. This study thus set out to apply Hadoop, a distributed processing system that had recently come into the spotlight for its capacity of processing large volumes of data, and propose an efficient analysis plan for large amounts of web log. The study checked the forms of web log by the effective web log collection methods and the web log levels by using Hadoop and proposed analysis techniques and Hadoop organization designs accordingly. The present study resolved the difficulty with processing large amounts of web log data and proposed the activity patterns of users through web log analysis, thus demonstrating its advantages as a new means of marketing.

A Security Log Analysis System using Logstash based on Apache Elasticsearch (아파치 엘라스틱서치 기반 로그스태시를 이용한 보안로그 분석시스템)

  • Lee, Bong-Hwan;Yang, Dong-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.382-389
    • /
    • 2018
  • Recently cyber attacks can cause serious damage on various information systems. Log data analysis would be able to resolve this problem. Security log analysis system allows to cope with security risk properly by collecting, storing, and analyzing log data information. In this paper, a security log analysis system is designed and implemented in order to analyze security log data using the Logstash in the Elasticsearch, a distributed search engine which enables to collect and process various types of log data. The Kibana, an open source data visualization plugin for Elasticsearch, is used to generate log statistics and search report, and visualize the results. The performance of Elasticsearch-based security log analysis system is compared to the existing log analysis system which uses the Flume log collector, Flume HDFS sink and HBase. The experimental results show that the proposed system tremendously reduces both database query processing time and log data analysis time compared to the existing Hadoop-based log analysis system.

Behavior analysis of entrance applicants using web log data (웹 로그데이터를 이용한 대학입시 지원자 행태 분석)

  • Choi, Seung-Bae;Kang, Chang-Wan;Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.3
    • /
    • pp.493-504
    • /
    • 2009
  • The web log data analysis is to analysis traces which visitors remain while they drop by a web-site. Ultimately it can help to obtain a lot of useful information that can efficiently manage homepage and perform CRM(customer relationship management) using obtained information. In this paper, we provide a basic information to manage efficiently homepage of D university and to establish strategy for invitation of new pupil, as analyzing web log data for D university.

  • PDF

Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment (클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현)

  • Kim, Myoungjin;Han, Seungho;Cui, Yun;Lee, Hanku
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.71-84
    • /
    • 2013
  • Log data, which record the multitude of information created when operating computer systems, are utilized in many processes, from carrying out computer system inspection and process optimization to providing customized user optimization. In this paper, we propose a MongoDB-based unstructured log processing system in a cloud environment for processing the massive amount of log data of banks. Most of the log data generated during banking operations come from handling a client's business. Therefore, in order to gather, store, categorize, and analyze the log data generated while processing the client's business, a separate log data processing system needs to be established. However, the realization of flexible storage expansion functions for processing a massive amount of unstructured log data and executing a considerable number of functions to categorize and analyze the stored unstructured log data is difficult in existing computer environments. Thus, in this study, we use cloud computing technology to realize a cloud-based log data processing system for processing unstructured log data that are difficult to process using the existing computing infrastructure's analysis tools and management system. The proposed system uses the IaaS (Infrastructure as a Service) cloud environment to provide a flexible expansion of computing resources and includes the ability to flexibly expand resources such as storage space and memory under conditions such as extended storage or rapid increase in log data. Moreover, to overcome the processing limits of the existing analysis tool when a real-time analysis of the aggregated unstructured log data is required, the proposed system includes a Hadoop-based analysis module for quick and reliable parallel-distributed processing of the massive amount of log data. Furthermore, because the HDFS (Hadoop Distributed File System) stores data by generating copies of the block units of the aggregated log data, the proposed system offers automatic restore functions for the system to continually operate after it recovers from a malfunction. Finally, by establishing a distributed database using the NoSQL-based Mongo DB, the proposed system provides methods of effectively processing unstructured log data. Relational databases such as the MySQL databases have complex schemas that are inappropriate for processing unstructured log data. Further, strict schemas like those of relational databases cannot expand nodes in the case wherein the stored data are distributed to various nodes when the amount of data rapidly increases. NoSQL does not provide the complex computations that relational databases may provide but can easily expand the database through node dispersion when the amount of data increases rapidly; it is a non-relational database with an appropriate structure for processing unstructured data. The data models of the NoSQL are usually classified as Key-Value, column-oriented, and document-oriented types. Of these, the representative document-oriented data model, MongoDB, which has a free schema structure, is used in the proposed system. MongoDB is introduced to the proposed system because it makes it easy to process unstructured log data through a flexible schema structure, facilitates flexible node expansion when the amount of data is rapidly increasing, and provides an Auto-Sharding function that automatically expands storage. The proposed system is composed of a log collector module, a log graph generator module, a MongoDB module, a Hadoop-based analysis module, and a MySQL module. When the log data generated over the entire client business process of each bank are sent to the cloud server, the log collector module collects and classifies data according to the type of log data and distributes it to the MongoDB module and the MySQL module. The log graph generator module generates the results of the log analysis of the MongoDB module, Hadoop-based analysis module, and the MySQL module per analysis time and type of the aggregated log data, and provides them to the user through a web interface. Log data that require a real-time log data analysis are stored in the MySQL module and provided real-time by the log graph generator module. The aggregated log data per unit time are stored in the MongoDB module and plotted in a graph according to the user's various analysis conditions. The aggregated log data in the MongoDB module are parallel-distributed and processed by the Hadoop-based analysis module. A comparative evaluation is carried out against a log data processing system that uses only MySQL for inserting log data and estimating query performance; this evaluation proves the proposed system's superiority. Moreover, an optimal chunk size is confirmed through the log data insert performance evaluation of MongoDB for various chunk sizes.

Real time predictive analytic system design and implementation using Bigdata-log (빅데이터 로그를 이용한 실시간 예측분석시스템 설계 및 구현)

  • Lee, Sang-jun;Lee, Dong-hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.6
    • /
    • pp.1399-1410
    • /
    • 2015
  • Gartner is requiring companies to considerably change their survival paradigms insisting that companies need to understand and provide again the upcoming era of data competition. With the revealing of successful business cases through statistic algorithm-based predictive analytics, also, the conversion into preemptive countermeasure through predictive analysis from follow-up action through data analysis in the past is becoming a necessity of leading enterprises. This trend is influencing security analysis and log analysis and in reality, the cases regarding the application of the big data analysis framework to large-scale log analysis and intelligent and long-term security analysis are being reported file by file. But all the functions and techniques required for a big data log analysis system cannot be accommodated in a Hadoop-based big data platform, so independent platform-based big data log analysis products are still being provided to the market. This paper aims to suggest a framework, which is equipped with a real-time and non-real-time predictive analysis engine for these independent big data log analysis systems and can cope with cyber attack preemptively.

UX Analysis for Mobile Devices Using MapReduce on Distributed Data Processing Platform (MapReduce 분산 데이터처리 플랫폼에 기반한 모바일 디바이스 UX 분석)

  • Kim, Sungsook;Kim, Seonggyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.9
    • /
    • pp.589-594
    • /
    • 2013
  • As the concept of web characteristics represented by openness and mind sharing grows more and more popular, device log data generated by both users and developers have become increasingly complicated. For such reasons, a log data processing mechanism that automatically produces meaningful data set from large amount of log records have become necessary for mobile device UX(User eXperience) analysis. In this paper, we define the attributes of to-be-analyzed log data that reflect the characteristics of a mobile device and collect real log data from mobile device users. Along with the MapReduce programming paradigm in Hadoop platform, we have performed a mobile device User eXperience analysis in a distributed processing environment using the collected real log data. We have then demonstrated the effectiveness of the proposed analysis mechanism by applying the various combinations of Map and Reduce steps to produce a simple data schema from the large amount of complex log records.

An Efficient Design and Implementation of an MdbULPS in a Cloud-Computing Environment

  • Kim, Myoungjin;Cui, Yun;Lee, Hanku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3182-3202
    • /
    • 2015
  • Flexibly expanding the storage capacity required to process a large amount of rapidly increasing unstructured log data is difficult in a conventional computing environment. In addition, implementing a log processing system providing features that categorize and analyze unstructured log data is extremely difficult. To overcome such limitations, we propose and design a MongoDB-based unstructured log processing system (MdbULPS) for collecting, categorizing, and analyzing log data generated from banks. The proposed system includes a Hadoop-based analysis module for reliable parallel-distributed processing of massive log data. Furthermore, because the Hadoop distributed file system (HDFS) stores data by generating replicas of collected log data in block units, the proposed system offers automatic system recovery against system failures and data loss. Finally, by establishing a distributed database using the NoSQL-based MongoDB, the proposed system provides methods of effectively processing unstructured log data. To evaluate the proposed system, we conducted three different performance tests on a local test bed including twelve nodes: comparing our system with a MySQL-based approach, comparing it with an Hbase-based approach, and changing the chunk size option. From the experiments, we found that our system showed better performance in processing unstructured log data.

Bayesian Analysis in Generalized Log-Gamma Censored Regression Model

  • Younshik chung;Yoomi Kang
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.3
    • /
    • pp.733-742
    • /
    • 1998
  • For industrial and medical lifetime data, the generalized log-gamma regression model is considered. Then the Bayesian analysis for the generalized log-gamma regression with censored data are explained and following the data augmentation (Tanner and Wang; 1987), the censored data is replaced by simulated data. To overcome the complicated Bayesian computation, Makov Chain Monte Carlo (MCMC) method is employed. Then some modified algorithms are proposed to implement MCMC. Finally, one example is presented.

  • PDF

A Study on Process Management Method of Offshore Plant Piping Material using Process Mining Technique (프로세스 마이닝 기법을 이용한 해양플랜트 배관재 제작 공정 관리 방법에 관한 연구)

  • Park, JungGoo;Kim, MinGyu;Woo, JongHun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.143-151
    • /
    • 2019
  • This study describes a method for analyzing log data generated in a process using process mining techniques. A system for collecting and analyzing a large amount of log data generated in the process of manufacturing an offshore plant piping material was constructed. The analyzed data was visualized through various methods. Through the analysis of the process model, it was evaluated whether the process performance was correctly input. Through the pattern analysis of the log data, it is possible to check beforehand whether the problem process occurred. In addition, we analyzed the process performance data of partner companies and identified the load of their processes. These data can be used as reference data for pipe production allocation. Real-time decision-making is required to cope with the various variances that arise in offshore plant production. To do this, we have built a system that can analyze the log data of real - time system and make decisions.