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Abstract 
 

Flexibly expanding the storage capacity required to process a large amount of rapidly 

increasing unstructured log data is difficult in a conventional computing environment. In 

addition, implementing a log processing system providing features that categorize and analyze 

unstructured log data is extremely difficult. To overcome such limitations, we propose and 

design a MongoDB-based unstructured log processing system (MdbULPS) for collecting, 

categorizing, and analyzing log data generated from banks. The proposed system includes a 

Hadoop-based analysis module for reliable parallel-distributed processing of massive log data. 

Furthermore, because the Hadoop distributed file system (HDFS) stores data by generating 

replicas of collected log data in block units, the proposed system offers automatic system 

recovery against system failures and data loss. Finally, by establishing a distributed database 

using the NoSQL-based MongoDB, the proposed system provides methods of effectively 

processing unstructured log data. To evaluate the proposed system, we conducted three 

different performance tests on a local test bed including twelve nodes: comparing our system 

with a MySQL-based approach, comparing it with an Hbase-based approach, and changing the 

chunk size option. From the experiments, we found that our system showed better 

performance in processing unstructured log data.  
 

 

Keywords: NoSQL, MongoDB, Cloud Computing, Hadoop, Big data processing, Banking 

System 
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1. Introduction 

Log data generated in various fields record a substantial amount of information generated 

during computer system management, with the accumulated log data being used in a wide 

variety of processes, including computer system management, system optimization, and 

user-customized optimization for various services [1, 2]. 

In this paper, we propose a MongoDB-based unstructured log processing system 

(MdbULPS) in a cloud-computing environment that processes large amounts of log data. Our 

system focuses on handling the log data generated in a bank, among various types of log data. 

In general, most log data generated in a banking process arise during customer transactions, 

and a separate log processing system is required to collect, store, categorize, and analyze the 

data according to the customer’s transaction processes. 

With a conventional computing environment, it is difficult to expand flexibly the storage 

capacity required to process a considerable amount of rapidly increasing unstructured log data 

and to implement a log processing system providing features that categorize and analyze 

unstructured log data. Therefore, in this study, we propose and implement a cloud 

environment-based log data processing system by introducing cloud computing technology 

[17, 30] for handling the unstructured log data that were difficult to control in a conventional 

computing infrastructure and system environment, such as distributed computing.  

Recently, “big data” [18, 19, 20] processing and analysis, which were difficult to handle in 

the existing computing environment, have become uncomplicated because of the appearance 

of cloud computing [4]. In fact, cloud-computing technology has been actively studied in 

various fields, because it can collect, categorize, and analyze rapidly growing real-time data as 

well as mass data accumulated over a long period of time [5]. 

The proposed system introduces infrastructure as a service (IaaS) in a cloud environment 

providing flexible expandability of computing resources, thereby flexibly expanding 

resources such as storage, memory, and CPU in situations where log data are accumulated for 

long time or are increasing exponentially. Furthermore, to overcome the limitations of the 

existing analysis tool in cases where a batch analysis for accumulated unstructured log data is 

required, Hadoop-based analysis module is introduced to the proposed system, with a rapid 

and accurate function for parallel and distributed log-data processing. Our system distributes 

collected log data in a Hadoop distributed file system (HDFS) for batch processing-based 

analysis, and MySQL and MongoDB for real-time processing-based analysis, and it alternates 

between these depending on the type of analysis. In particular, our system provides an 

automatic recovery function in the event of data loss and system failures by introducing 

Hadoop distributed file system (HDFS), which creates and stores replicas of accumulated log 

data in blocks.  

Further, from the perspective of a banking-related log processing system, our system sends 

log data with information generated throughout banking, such as a customer’s transaction 

waiting time and banking processing time to our cloud server to collect, categorize, and 

analyze the unstructured log data. Then, our system provides a function that monitors and 

displays the analyzed results to users and administrators via the web monitoring system.  

In particular, to process and analyze unstructured data, the proposed system utilizes 

MongoDB, a non-relational database, in place of the existing relational database. Thus far, 

relational databases, such as MySQL, have been used to store and manage data. Relational 
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databases use predefined schemata to store and manage structured data. However, relational 

databases with strict schema structures are difficult to merge with other databases with 

different schemata. In addition, such databases have an inappropriate structure for processing 

unstructured data such as log data and have the problem of expanding a database through 

adding system nodes. To overcome such structural limitations, numerous researchers have 

been conducting studies on distributed databases, such as NoSQL, with flexible schema 

structures [3, 6, 7].  

MongoDB, representing NoSQL, is a document-oriented data model with flexible 

schemata; therefore, it is suitable for systems that process and analysis unstructured data. 

Node distribution is a key element in distributed databases for dealing with problems related to 

the exceedance of storage capacity resulting from rapid log data increase. Although numerous 

databases provide the sharding [21, 22] function to distribute and split data through node 

distribution, existing relational databases such as MySQL have difficulty distributing and 

splitting data owing to their strict schemata. In addition, for node distribution, such databases 

have difficulty in providing maintenance, because they add and distribute nodes manually. In 

contrast, MongoDB provides ease of management through the AutoSharding function, which 

allows users to divide data into small chunks and store them in numerous shards. 

The proposed system consists of a log collector, a log graph generator, MongoDB, 

Hadoop-based analysis, and MySQL modules. The log collector module distributes log data 

generated from banks into the MongoDB or MySQL module of our cloud server according to 

log type. Using log data analyzed by the MongoDB, Hadoop-based analysis, and MySQL 

modules, the log graph generator module provides the analyzed results to the user in the form 

of a web interface that includes graphs. Log data required for real-time analysis are stored in 

the MySQL module, and the analyzed information is displayed to users by the log graph 

generator module in real time. In addition, log data accumulated on an hourly basis are stored 

on the MongoDB module, and that information is also displayed. Log data accumulated in the 

MongoDB module are analyzed and processed through the parallel and distributed processing 

methods of the Hadoop-based analysis module, and the results are displayed by the log 

generator module.  

To evaluate the proposed system, we conducted three different performance tests on a local 

test bed including twelve nodes: comparing our system with a MySQL-based approach, 

comparing with a relational database-based approach, and changing the chunk size option. 

From the experiments, we found that our system showed better performance in processing 

unstructured log data. 

The remainder of this paper is organized as follows. Section 2 discusses MongoDB and 

relational databases. Section 3 describes our model and the core architecture of MdbULPS, as 

well as presenting the workflow for processing a large amount of log data. Section 4 explains a 

prototype of the proposed system and its configuration, including implementation issues. 

Section 5 provides a description of the performance evaluation conducted to verify the 

effectiveness of the proposed system. Section 6 presents our concluding remarks and plans for 

future work. 

2. Related Work 

NoSQL (often interpreted as Not Only SQL) is a non-relational database. Relational databases 

with pre-determined schemata have been used in various fields; however, they have 

limitations in processing unstructured data. Therefore, NoSQL databases have received 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015                                    3185 

remarkable attention from developers and researchers because of its flexible schemata 

structure and its ability to expand the structure of a database through node distribution [6, 7, 8, 

9, 10]. The following section compares and describes the NoSQL and relational database data 

models, presenting the key concept and structural features of MongoDB.  

2.1 Comparison of NoSQL with Relational Databases 

A relational database, with features such as atomicity, consistency, isolation, and durability, 

maintains the integrity of a database through the transaction function. A relational database 

with a structure of predefined schemata can minimize data redundancy, because normalization 

is conducted when data are stored in the database. Furthermore, it has an advantage with 

processing complex query operations such as join. However, although relational databases are 

used in various fields, such a database is inappropriate for processing and analyzing 

unstructured data, because the data are stored and normalized in the database with a predefined 

schema structure. In addition, it has a limitation with regard to expanding exponentially 

increasing data through node distribution [6].  

A NoSQL database provides a mechanism for storage and retrieval of data modeled in 

means other than the tabular relations used in relational databases. Motivations for this 

approach include simplicity of design, horizontal scaling, and finer control over availability 

[13]. Although NoSQL does not support complex operations, such as join, that are provided 

only in existing relational databases, it has a suitable structure for processing unstructured data 

owing to the fact that it can support ease of expanding and splitting data in a distributed 

environment through node distribution. Therefore, NoSQL, with flexible schemata, has 

received remarkable attention from developers and researchers as an alternative to overcome 

the limitations of relational databases [6, 7, 8, 9, 10, 11]. There are various approaches for 

classifying NoSQL databases. We describe only three models.  

2.1.1 Key-value-oriented Model 

The key-value-oriented model has a simple structure of storing data in the form of key and 

value, using the key to search for the value. The data model is divided into four models, the 

key-value cache, key-value store, key-value store (eventually consistent), and key-value store 

(ordered) models. Representative databases are Dynamo, MemcacheDB, TokyoTyrant, 

Voldemort, Aerospike, Memchched, Coherence, and GigaSpaces.  

2.1.2 Column-oriented Model 

The column-oriented data model stores data tables with sections of columns of data rather than 

rows of data. In fact, the model serializes all of the values of a column together, then the values 

of the next column, and so on. In contrast, most relational databases store data in rows. 

Because the model stores data separately in columns, it has an advantage with significantly 

fast processing time for storing and querying data when the data increases exponentially. 

Representative databases are Accumulo, Druid, Hbase [24, 25], and Vertica. 

2.1.3 Document-oriented Model 

The document-oriented model with flexible schemata is designed for storing, retrieving, and 

managing document-oriented information, also known as semi-structured or unstructured data. 

Therefore, the model does not require pre-determined schemata [5, 6, 7]. The model can 

extract and store data and metadata using the XML, JSON, and BSON formats. Representative 

databases are MongoDB [31], CouchDB [26], SimpleDB, Cassandra, and ArangoDB.  
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2.2 MongoDB 

MongoDB, an open source C++-based NoSQL database project released in 2009, leads 

NoSQL database. It is a document-oriented data model that has a flexible schema structure and 

is therefore suitable for processing unstructured log data. The central concept of MongoDB is 

that documents are the basic units for storing data. A document supports and provides a variety 

of types of data structure consisting of key-value structures, such as numbers, dates, arrays, 

and inner documents. A document stores data in key-value structures in JavaScript object 

notation (JSON) form using binary JSON (BSON).  

MongoDB provides two replication policies, master–slave and replica-set, to be prepared 

for system failures and data loss. The master-slave approach improves the system’s reliability 

and performance by storing replicas generated in a master node in slave nodes. However, this 

policy has a severe single-point-of-failure (SPOF) disadvantage. The entire system halts when 

system failures occur in the master node. The replica-set policy is used to overcome this 

problem. MongoDB provides high availability through use of replica sets. A replica set 

consists of two or more copies of the data. Each replica is either a primary or a secondary 

replica. When a master node fails, MongoDB automatically selects an alternative master 

among the remaining nodes and then generates and distributes new replicas for missing 

replicas [14]. 

Although numerous databases provide the sharding [21, 22, 23] function to distribute and 

split data through node distribution, existing relational databases such as MySQL have a 

problem with distributing data because of their strict schemata. In addition, such databases 

have difficulty providing maintenance for node distribution, because they add and distribute 

nodes manually. In contrast, MongoDB provides ease of management via the AutoSharding 

function, which allows users to divide data into chunks and store them in shards.  

3. MdbULPS in a Cloud Computing Environment 

3.1 Background for Introducing the Cloud-Computing System 

We designed and developed our system in the IaaS cloud environment. Therefore, our system 

can support ease of system management by providing flexible expandability of system 

resources such as storage, RAM, and CPU to process or store more massive amounts of 

unstructured log data. With the analysis system of the existing computing infrastructure, it is 

difficult to analyze accumulated unstructured data or massive log data. In these environments, 

cloud-computing technology is the most promising alternative for solving such problems. 

Thus, the technology is receiving considerable attention in the field of “big data” processing.  

Cloud and distributed processing techniques based on Hadoop [27, 29] have become the 

core platform for processing large-scale unstructured data. Our system can analyze massive 

log data in a short period of time in a parallel and distributed manner by adopting MapReduce 

[15, 28] and HDFS [16, 32] into the Hadoop-based analysis module in MdbULPS. In fact, we 

use HDFS in the module for automatic system recovery against system failures and data loss. 

After being distributed, log data are replicated at three data nodes according to the Hadoop 

distribution policy, thus complying with the entire distributed processing procedure and 

enabling recovery from data loss. The NameNode controls mechanisms for selecting 

management nodes, copying replicas, and conducting automatic recovery. However, our 

system focuses on MongoDB-based analysis, rather than Hadoop-based analysis. Recently, 

most analysis systems utilize Hadoop to provide high availability along with open-source 
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software packages from the Hadoop Federation. Yet, Hadoop is exclusively focused on batch 

processing, rather than real-time processing. The proposed system, insofar as it deals with 

banking-related log processing, demands non-batch processes, such as iterative jobs, real-time 

queries, and log-data streams. Although analysis systems for non-batch processes can be 

implemented by combining open-source software from Hadoop ecosystem (e.g., Storm [33], 

Spark [34], Kafa [35], etc.), this approach is difficult to implement, and it results in a Hadoop 

dependency between open-source and legacy systems. Therefore, our system uses Hadoop and 

the HDFS exclusively for storing log data and as a journaling file system, and it uses 

MapReduce for analyzing log data based on batch processing.  

3.2 Architecture of MdbULPS 

The proposed MdbULPS is designed to run on a Hadoop cluster in a distributed manner. The 

overall system architecture is shown in Fig. 1. The proposed system has five components: the 

log collector module (LCM), the log-graph generator module (LGGM), the MySQL module 

(MSM), the MongoDB module (MdbM), and the Hadoop-based analysis module 

(HadoopAM).  

3.2.1 LCM 

The primary role of LCM is to collect the log data generated during the entire process of all 

customer transactions from each bank in the cloud server. In addition, it distributes the 

collected log data in the cloud server to MdbM or MSM according to the type of data.  

Log data requiring real-time data analysis and log data requiring an hourly analysis are sent 

to MSM and MdbM, respectively. LCM transfers log data accumulated over a long period of 

time to HadoopAM, and the log data transferred from LCM are processed and analyzed by 

HadoopAM in a distributed and parallel manner.  

3.2.2 LGGM 

The primary role of LGGM is to visualize analyzed data through a web interface, providing 

graphs with analyzed results. Log data collected by LCM are analyzed by MSM, MdbM, and 

HadoopAM. LGGM generates pie, line, and bar graphs and a table based on the analyzed 

results and displays them in a web dashboard.  

3.2.3 MSM 

MSM serves to store and process the log data that manage the transaction number being 

handled by the teller and the number of customers waiting in line at each bank. Thus, MySQL 

processes the log data generated throughout the entire process of the customer’s transaction in 

real time. 

3.2.4 MdbM 

MongoDB, which consists of multiple nodes, creates and stores replicas for the log data by 

using the replica-set policy to ensure redundancy and facilitate load balancing. In fact, 

MongoDB performs sharding in a manner that addresses the challenge of scaling to support 

high throughput and data consistency when the log data are stored. By default, there are three 

replicas, but that number can be changed using a MongoDB configuration. In our MdbULPS, 

MdbM manages and stores log information in MongoDB, including the transaction number, 

waiting and processing time for banking, number of bank tellers, and the like, once the 
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banking process is completed. In addition, depending on the requirements of a user’s query, it 

extracts the relevant log data and then transfers those data for the required analysis.  

3.2.5 HadoopAM 

The main roles of HadoopAM are to perform quick and accurate parallel and distributed 

processing on the large-scale log data accumulated in MongoDB of MdbM, according to the 

user’s analysis command, and then send the analyzed results to the graph generator module to 

create graphs. Through the MapReduce component provided by HadoopAM, users and 

administrators can perform an analysis to utilize statistical results, such as customer 

transaction processing time and waiting time for conducting banking business by extracting 

the log data by hour, date, month, year, and branch, using various queries. Furthermore, 

HadoopAM creates and stores replicas of the log data in blocks in a distributed manner using 

the HDFS, thereby ensuring data consistency and maintaining fault tolerance. HDFS is used in 

HadoopAM, as well as over the entire system. Using NameNode in HDFS, which 

systematically manages generated replicas, our system conducts an automatic system recovery 

using the replicas stored in other nodes, when unexpected system failures occur [32]. Thus, 

based on these systematic features, the proposed module and the entire system maintain the 

stability of the entire system and ensure reliability for safe log data analysis. 
 

 
 

Fig. 1. Overall architecture of MdbULPS over a cloud-computing environment 

 

3.3 Log Data Parameters 

The purpose of the proposed system is to collect, categorize, analyze, and visualize log data 

generated during each stage of customers’ banking processes. To secure accuracy and 

consistency of log data information used in data communication between modules, the 

parameters of the log data must be pre-defined. Table 1 lists these pre-defined log data 

parameters. Fig. 2 shows real data stored in MongoDB using our log data parameters.  
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Fig. 2. Example of real log data stored in MongoDB 

 

The log data parameters are defined as follows: id, bank_code, teller, job, number, 

generator_time, generator_wait_time, teller_start_time, and teller_end_time. The id parameter 

automatically generated by MongoDB provides a unique identification number for each log 

datum. The bank_code parameter provides the unique code for the bank that generated the log 

data, with each bank having one unique bank_code. The teller parameter shows the unique 

identification number of the bank teller currently conducting the customer’s banking activity. 

The job parameter is used for distinguishing types of banking transaction. In particular, the N 

value of the job parameter is assigned for general banking business, such as deposit, 

withdrawal, or remittance, while F is assigned for the others. The Number parameter indicates 

the number generated by the guest paging system. For example, the value 130 for the number 

parameter indicates that 129 people are lined up in front of the person who has the number 130. 

The generator_time parameter represents the time at which the number parameter was issued, 

and the generator_wait_time parameter shows the time until the beginning of the customer’s 

banking activity after the number is generated. The teller_start_time parameter records the 

start time of the customer’s banking transaction, and the teller_end_time parameter records the 

end time of that transaction.  
 

Table 1. Definition of log data parameters 
 

Type Example 

id 54eff4bc1f7385843833d3da9b 

bank_code AA01 

Teller t001 

Job N, F 

Number 43 

generator_time 09:10 

generator_wait_time 20 

teller_start_time 09:30 

teller_end_time 09:40 

 

3.4 Service Model and Workflow of MdbULPS 

In this section, we introduce the MongoDB-based unstructured log processing service model 

as our motivation for designing and implementing MdbULPS, presenting the workflows of the 

sequential tasks in our system during the entire banking process. Workflows for real-time and 

accumulated log information are presented. The log information is divided into two types, 

real-time and accumulated. 
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3.4.1 MdbULPS Model in a Cloud-Computing Environment 

Fig. 3 shows the proposed MdbULPS model. The model consists primarily of the data source, 

data collection, categorization and analysis, and output layers for the analyzed results. In the 

traditional system for processing log data, the analyzed results are sent to a central server after 

processing and analyzing the log data in local servers within bank branches generating log data. 

In this computing environment, with exponentially increasing log data, it is difficult to 

implement the realization of flexible storage expansion functions for processing a massive 

amount of unstructured log data and executing a considerable number of functions to 

categorize and analyze the stored unstructured log data.  To overcome these limitations, the 

proposed service model can support flexible scalability for deployed computing resources 

such as storage, memory, and CPU, when the volume of log data increases exponentially by 

incorporating cloud-computing technology and various cloud-based open sources.  

 

 
 

Fig. 3. MdbULPS model 

 

The primary target of the proposed service model is unstructured log data resulting from 

transactions occurring in numerous branches. Log data generated in the data source layer that 

are not to be handled by local servers in each corresponding branch are sent directly to a 

central server in the cloud or to a virtual machine generated in the IaaS cloud environment. To 

maintain data collection scalability and efficiency, once log data are sent, the data collection 

layer uses Hadoop ecosystem-based open sources, such as Chukwa, Scribe, and flume, as well 

as various public APIs provided by vendors with raw data to collect the data. The 

categorization and analysis layer stores the data collected by the data collection layer in a 
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distributed manner in HDFS supporting automatic system recovery and maintaining data 

consistency. Furthermore, Sqoop is used in this layer for effective data migration, when 

collecting and processing unstructured data and structured data simultaneously; consequently, 

the user can easily transfer the data from the MongoDB to MySQL, and vice versa, when 

needed. The most valuable service of this layer is to analyze the collected data using Hadoop’s 

MapReduce according to user requirements. Using this layer, developers and analysts can 

obtain an environment for simply developing analysis program code for the MapReduce 

algorithm and automatically conducting input and output processing for the log data and 

distributed and parallel processing by the MapReduce framework. Finally, the output layer for 

the analysis results visualizes the analyzed data in graphs and tables and provides the analyzed 

log data information to users through a web interface. 
 

3.4.2 Workflow for Providing Real-Time Log Information 

Fig. 4 shows a workflow diagram for providing real-time log information. The log data for 

real-time analysis with current banking transactions in progress and waiting is generated in 

real time, because a customer’s banking transaction during business time already begins. The 

generated log data are collected by LCM and stored in MySQL of MSM for query and analysis. 

The analyzed real-time log data are transferred to LGGM, followed by display and monitoring 

of real-time information of a corresponding bank using graphs and tables via the LGGM web 

interface. 

 
Fig. 4. Diagram of real-time log data processing workflow 

 

3.4.3 Workflow for Providing Accumulated Log Information 

Fig. 5 shows a workflow diagram for providing accumulated log information. The 

accumulated log data are generated at the completion of each customer’s banking transaction. 

The elements of log data are listed and presented in Table 1. The generated log data are stored 

in document form in MongoDB of MdbM without processing data formalization. The 

accumulated log data become useful log information through analysis of the data in a 
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distributed and parallel manner using HadoopAM by hour, date, month, year, and branch. The 

information is provided to users through the web interface.  

 
 

Fig. 5. Diagram of accumulated log data processing workflow 

 

4. Implementation and prototype 

4.1 MdbULPS Configuration and Implementation 

For our prototype implementation, we constructed our own cluster servers in a 

cloud-computing environment consisting of 12 nodes. Each node consisted of Linux OS 

(Ubuntu 12.04 LTS 64-bit) running on an Intel core i7-4790 processor (3.60 GHz) with 8 GB 

registered DIMM DDR memory and 2 TB SATA-3 disk storage. All of the nodes were 

interconnected via 100 Mbps Ethernet adaptors. To implement LCM, we designated one node 

as our log collector server and used Java (Oracle JDK 64-bit 1.7.0_72) for LCM. To 

implement LGGM, we also designated one node as our graph generator server running Tomcat 

7.0, with the server using JSP to implement the web-based dashboard and Google chart APIs 

to generate the graphs and tables showing the analyzed log information. MSM was 

implemented in one node, using MySQL 5.5.41 for real-time log information. In MSM, we 

used Oracle MySQL driver to connect MySQL with each module. To implement MdbM, we 

installed MongoDB 2.6.7 – 64-bit for accumulated log information on all the nodes, and we 

used a 10gen Mongo driver to connect our MongoDB with each module. In addition, to create 

a simulation environment for a customer’s banking transaction, we generated log data 

including the eight parameters listed in Table 1 using Java libraries. HadoopAM comprised 

one name node, with eleven data nodes running on HDFS with Hadoop 2.6.0. 
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4.2 MdbULPS Prototype 

Fig. 6 shows a diagram of a web-based prototype of MdbULPS.  Our web-based interface was 

developed with six jsp files. RealTimeView.jsp is used for LGGM to create graphs on 

real-time log information stored in MSM, sending the created graphs in MySqlView.jsp and 

showing them to users through a web interface. Moreover, GeneratorLog.jsp creates graphs on 

the average waiting time for processing one banking transaction and the number of waiting 

customers per time unit. Through use of CustomerProc.jsp, graphs for information on the 

number of completed banking business transactions by bank teller per hour, the average time 

spent on the banking business by the teller, and the teller’s daily efficiency on the business are 

generated. The graphs generated by GeneratorLog.jsp and CustomerProc.jsp are sent to 

MongoView.jsp to be presented to users on the web interface.  

 
 

 
 

Fig. 6. Structure of the user web interface 

 

4.2.1 Web page for Providing Real-time Log Information 

Fig. 7 shows real-time log information generated by a customer’s transaction at each 

corresponding bank in real time.  

 

 
 

Fig. 7. Web-based dashboard for real-time log information 
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When the user accesses MySqlView.jsp, MSM provides real-time information regarding 

the current transaction number and the number of transactions waiting in the bank selected by 

users and administrators by extracting the information from log data stored in MySQL. 

4.2.2 Web Page for Providing Accumulated Log Information on the Number of 
Waiting Customers 

Fig. 8 illustrates the web page showing graphs and tables for accumulated log data generated 

after completion of a customer’s transaction at each bank. Users and administrators can 

confirm large amounts of information, including the number of waiting customers per hour 

and the average waiting time for a custom’s banking transaction in the specific bank they want 

to check. ① in Fig. 8 shows in graph and table form the number of waiting customers for both 

general banking and other services during general banking hours (9 am to 4 pm) in a specific 

bank. The results, with the average customer waiting time for both services during the same 

time as ①, are shown in ② of Fig. 8.  

 

 
 

Fig. 8. Web-based dashboard for accumulated log data information of waiting time 

 

4.2.3 Web Page for Providing Accumulated Log Information per Unit of Time 

By accessing CustomerProc.jsp, users and administrators can monitor a large amount of 

information, including the banking business efficiency of bank tellers. The information is as 

follows: the number of banking transactions conducted by bank tellers per day and hour, 

respectively, and the average time spent by tellers to complete one baking transaction. The 

business efficiency of bank tellers is shown in Fig. 9 in table and graph form. ① in Fig. 9 

shows a graph of the ratio of general business transactions and other service transactions 

conducted by a teller. ② in Fig. 9 refers to a graph indicating an average throughput conducted 

by a teller per hour, and ③ shows the average processing time to complete one transaction. 
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Fig. 9. Web-based dashboard for accumulated log information per unit of time 

 

5. MdbULPS Performance Evaluation 

5.1 Experimental Environment Description 

We designed and implemented MdbULPS on a local test bed consisting of twelve nodes. 

Section 4.1 describes the cluster configuration and software specifications in more detail. To 

validate and verify the effectiveness and performance of our system, we conducted three 

different performance tests based on simulated log data generated by customer transactions at 

a bank. In fact, we created six types of log datasets including the nine parameters listed in 

Table 1. Table 2 shows the datasets used in the performance evaluations. The size of one log 

for one customer transaction is 239 bytes. 

 
Table 2. Log datasets used in the performance evaluations 

 

Log dataset  

Size of dataset (GB) 1 2 4 8 16 32 

Number of logs 429,280 8,585,360 17,170,720 34,341,440 68,682,880 137,365,760 

 

Our three different performance tests are as follows. First, to compare our 

MongoDB-based approach with relational database-based approaches using MySQL, we 

measured insertion and query processing time for each dataset in the MongoDB- and 

MySQL-based approaches, respectively. Second, for comparing NoSQL-based approaches, 

we conducted a comparative performance that measured the total processing time for inserting 

and querying each dataset in the MongoDB- and Hbase-based approaches, respectively. 

Finally, we conducted a performance test measuring the total execution time for inserting 

datasets according to chunk size to confirm the optimized chunk size options of MongoDB.  
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5.2 Comparison of MdbULPS with a Relational Database-based Approach  

In the first experiment, we measured the total processing time for inserting datasets and the 

time to complete 1,000 queries in the MongoDB- and MySQL-based approaches, respectively. 

To deploy the same performance environment of the MySQL-based approach, the tests for 

both approaches are conducted in one node because MySQL can run on a single node. We 

used MySQL 5.5.41 and MongoDB 2.6.7. To insert the datasets, we used the  ‘INSERT’ 

command for MySQL, and the put( ) method for MongoDB. For querying the datasets, we 

used ‘select * from bank, where bank_code=AA24B’ for MySQL, and the command line 

shown in Fig. 10. 

 

Command lines for querying each dataset in MongoDB-based approach 

1: BasicDBObject  query = new BasicDBObject ( ) ; 

2: Query.put(“bank_code”, “AA24B”)); 

3: dbCollection.find(query); 

 

Fig. 10. Example of command lines for query in MongoDB-based approach 

 

Table 3 lists the results of the performance tests for inserting and querying each dataset, 

and Fig. 11 shows the total insertion processing time in both approaches. As can be seen from 

the table and figure, our MongoDB-based system delivered better performance than the 

MySQL-based relational database-based approach in terms of insertion and query processing 

time. For example, in the test for inserting each log dataset, we found that our approach 

performed approximately two times faster in inserting each dataset than the MySQL-based 

approach. In fact, for a 32 GB dataset, our approach required 9,465 s (approximately 157 min) 

to complete inserting a dataset into our system, while the MySQL-based approach required 

18,231 s (approximately 304 min). In the querying performance test, our system delivered 

strikingly better performance than the MySQL-based approach. For example, for a 32 GB 

dataset, our system required 0.225 s to complete 1,000 queries, while the MySQL-based 

approach required 69.542. Our approach’s performance was approximately 393 times faster 

than that of the MySQL-based approach.  

 
Table 3. Total processing time(s) for query and insertion in both database-based approaches 

 

Dataset 
MongoDB-based Approach MySQL-based Approach 

Insert Query Insert Query 

1 GB 256  0.127 508 59.612 

2 GB 544  0.129 940 60.492 

4 GB 1091  0.132 2054 64.282 

8 GB 2582  0.159 4288 65.433 

16 GB 4835 0.213 8623 67.844 

32 GB 9465 0.225 18231 69.542 
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The reason the proposed system showed such a strikingly better performance than the 

MySQL-based system is as follows. Our system reduced the processing time for query and 

insertion exponentially by storing and processing unstructured log data without requiring 

standardization procedures to be performed every time, as a relational database would require, 

because our system applies the flexible and expandable schemata featured by MongoDB. 

Excellent querying performance can be achieved owing to the fact that our system can use the 

MongoDB memory mapping technique. Finally, such a performance was delivered because, in 

contrast to a relational database, MongoDB does not perform a transaction procedure. 

 

 
Fig. 11. Performance results of both database-based approaches for inserting each dataset 

 

5.3 Comparison of MdbULPS with NoSQL (Hbase) 

In the second experiment, to compare our approach with a different NoSQL-based approach, 

we tested and measured the total processing times for inserting and querying each dataset. This 

performance was conducted on our own twelve-node cloud cluster. Other aspects of the 

environment, such as software specification, manner of measuring total processing time, and 

datasets, were the same as for the test conducted in section 5.2. To conduct the NoSQL-based 

approach, we used Hbase [24, 25], version 0.98.9 provided by Apache Hadoop. Furthermore, 

we used the Hbase Filter class and the command lines shown in Fig. 12 for querying each 

dataset. 

 

Command lines for querying each dataset in Hbase-based approach 

1: Filter filter = new SingleColumnValueFilter(Bytes.toBytes(“cf:teller”), null, 

CompreOP.EQUAL.Bytes.toBytes(“AA24B)); 

2: Scan s = new Scan ( ); 

3: s.setFilter(filter); 

4: ResultScanner rs = table.getScanner(s); 

 

Fig. 12. Example of command lines for querying in Hbase-based approach 
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Table 4. Total processing time(s) for query and insertion in both database-based approaches 

 

Dataset 
MongoDB-based approach Hbase-based approach 

Insert Query Insert Query 

1 GB 231 0.124 564 3.358 

2 GB 531  0.126 1281 3.577 

4 GB 1029  0.130 2475 3.688 

8 GB 2038  0.128 4899 3.944 

16 GB 4287 0.123 10237 4.018 

32 GB 8950 0.122 21495 4.563 

 

 
Fig. 13. Performance results of both database-based approaches for inserting each dataset 

 

Table 4 shows processing time performance for our approach and the Hbase-based 

approach for the insert and query functions. Fig. 13 illustrates the results for inserting each 

dataset in both approaches. The results of the performance are similar to those of the test in 

Section 5.2. In fact, the performance in inserting each dataset was approximately 2.4 times 

faster than that of the Hbase-based approach. Although both database-based approaches are a 

kind of NoSQL database, a better performance result was shown with our approach, because a 

column-based database such as Hbase is inappropriate for processing log data of the document 

type. In addition, for measuring the querying of each dataset, our approach also showed better 

performance than the Hbase-based approach. In fact, our system was 30 times faster than that 

approach, in terms of completing the querying of each dataset. The reason why the 

MongoDB-based approach outperformed the Hbase-based approach is that the Hbase 

conducts a full table scan each time users require queries. From the results, we found that our 

system clearly exhibited a better performance than the Hbase-based approach provided by 

Apache Hadoop in terms of system reliability, with inserts and queries for analyzing a large 

volume of log data. On the other hand, even though the Hbase-based approach performed less 

well for querying than our approach, it showed better performance than the MySQL-based 

approach, because Hbase running on shard servers or master and slaves uses distributed and 

parallel processing for querying and analyzing stored data.  
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5.4 Changing the Chunk Size Factor 

In the third experiment, we measured the total elapsed inserting time using different 

MongoDB options for the chunk size. MongoDB processes large portions of datasets in a 

parallel and distributed manner, after the datasets are split into chunks of size 64 MB. 

However, by inputting the following command line on the MongoDB shell, 

db.settings.save( {_id:”chunksize”, value: <sizeInMB>} ), users and 

administrators can change the chunk size options to improve data processing performance, 

depending on the size and type of unstructured data. Thus, to verify that chunk size options 

affected performance, we measured the time required to complete inserting for a 1 GB dataset. 

Seven chunk size options were used in the experiment, viz., 32, 64, 128, 256, 512, and 1024 

MB. Fig. 14 shows the total processing times required for inserting datasets with different 

chunk size values. According to Fig. 14, we found clearly that the performance of our system 

was best when the chunk size was set to 64 MB. 

 

 

Fig. 14. Total processing time for inserting 1 GB dataset with various chunk size factors 

 

Sharding is a method for storing data across multiple machines in order to avoid exceeding 

the storage capacity of a single machine, and to conduct distributed queries. MongoDB in the 

proposed system utilizes an auto-sharding function that distributes and balances log data from 

banks in distributed shard servers or nodes. It supports the auto-sharding function through the 

configuration of a sharded cluster that consists of three components: shard servers, mogos 

routers, and configuration servers.  

When the log data grows beyond the specified chunk size (default: 64 MB) configured by 

administrators and users, MongoDB in the proposed system attempts to split the log data into 

chunks of this size (e.g., 64 MB) and then stores these chunks in shard servers. Our system has 

four shard servers, and each server includes three replica sets. The auto-sharding function 

involves the following sharded cluster processes: sharded collection balancing, chunk 

migration across shard servers, chunk splits in a sharded cluster, sharded key indexes, and 

sharded cluster metadata.  

The reason why this factor affects performance in inserts when changing the chunk size is 

that I/O overhead is generated during the chunk migration process. If the chuck size factor is 

set to less than 64 MB, performance is degraded because I/O overhead results from more 
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frequent migrations between each shard server. The other reason is the increased management 

cost generated in the sharded cluster metadata process. In fact, after the chunks migrate to the 

sharded servers, the configuration servers update and store the metadata, including the list of 

chunks on each shard server and the ranges that define these chunks. That is, because the 

number of chunks increases, there is more overhead in the configuration servers. In addition, 

although there are fewer migrations in the opposite case, overhead results from the perspective 

of networking, because existing chunks of 64 MB remain larger until they reach the newly 

configured size. Therefore, performance is degraded when the chunk size is set to more than 

64 MB.   

6. Conclusion 

After identifying limitations to the processing and analyzing of unstructured log data through 

relational databases such as MySQL, we focused on designing MdbULPS in a 

cloud-computing environment including MapReduce, Hadoop, and MongoDB to collect, 

categorize, and analyze unstructured log data generated from banks. The proposed system uses 

a cloud environment to provide a flexible expansion of computing resources and includes the 

ability to expand resources such as storage space and memory in a flexible manner, under 

conditions such as extended storage or rapid log data increase. Moreover, to overcome the 

processing limits of the existing analysis tool, when a batch analysis of the aggregated 

unstructured log data is required, the proposed system includes a Hadoop-based analysis 

module for quick and reliable parallel-distributed processing of a massive amount of log data. 

Furthermore, because the HDFS stores data by generating copies of the block units of the 

aggregated log data, the proposed system offers automatic restore functions for the system to 

operate continually after it recovers from a malfunction. Finally, through a distributed 

database using the NoSQL-based MongoDB, the proposed system provides methods of 

effectively processing unstructured log data. 

To validate the performance of the proposed MdbULPS, we conducted three different tests 

on our local test bed consisting of twelve nodes to compare our system with relational 

database-based and Hbase-based approaches with regard to inserting and querying each 

dataset and identifying the optimal chunk size options. From the experiments, we confirmed 

that our system exhibited better performance with inserting and querying each dataset 

compared with the others. In addition, we found that our system performed best when the 

chunk size was set to 64 MB. The reason the performance is affected by the chunk size is the 

I/O overhead generated during the chunk migration process.  

In future research, we plan to implement our system in a real cloud-computing 

environment, such as Amazon EC2, Rackspace, or KT cloud, using real log data generated for 

banks, rather than simulated log data. In addition, we will handle various log data such as 

traffic, stock, online shopping mall, and security log data by using our system.  
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