• Title/Summary/Keyword: lod

Search Result 737, Processing Time 0.033 seconds

Development of Simultaneous Analysis for the Multi-residual Pesticides in the Ginseng Extract using Gas Chromatography (인삼농축액에서 GC를 이용한 잔류농약 동시다성분 분석법의 개발)

  • Shin Yeong-Min;Lee Seon-Hwa;Son Yeong-Uk;Jeong Ji-Yoon;Jeoung Seoung-Wook;Park Heung-Jai;Kim Sung-Hun;Won Young-Jun;Lee Chang-Hee;Kim Woo-Seong;Hong Moo-Ki;Chae Kab-Ryong
    • Journal of Environmental Science International
    • /
    • v.15 no.1
    • /
    • pp.85-94
    • /
    • 2006
  • The simultaneous analysis of multi-residual pesticides was developed using a gas chromatography (GC) method. In this study, a simple and reliable methodology was improved to detect 154 kinds of pesticides in sinseng extract sample by using a liquid-liquid extraction procedure, open column chromagraphy and chromatographic analysis by CC electron capture detector (ECD) and GC nitrogen-phosphorus detector (NPD). The 154 kinds of pesticides were classified in 4 groups according to the chemical structure. The extraction of pesticides was experimented with $70\%$ acetone and dichloromethane/petroleum ether in order, and cleaned up via open column chromatography $(3\times30cm)$ packed with florisil $(30g,\;130^{\circ}C,\;12hrs)$. The final extract was concentrated in a rotator evaporator at $40^{\circ}C$ until dryness. Then the residue was redissolved to 2ml with acetone, and analyzed by GC-ECD and GC-NPD. The applied concentration of pesticides was over $1\~10{\mu}g/ml$. The recovery tests were ranged from $70.7\%$ to $115.2\%$ with standard deviations between 0.3 and $5.7\%$ of the standard spiked to the ginseng extract sample (Group $I\~IV$). The limit of detection (LOD) ranged from 0.001 to $0.099{\mu}g/ml$ (Group $I\~IV$). The 9 kinds of pesticides were not detected. The developed method was applied satisfactory to the determination of the 154 kinds of pesticides in the ginseng extract with good reproducibility and accuracy.

Simultaneous Determination of Hesperidin and Glycyrrhizin in Pyungwi-san by HPLC/DAD (HPLC-DAD를 이용한 평위산 중의 Hesperidin 및 Glycyrrhizin의 동시분석법 확립)

  • Lee, Mi-Kyeong;Choe, Ok-Gyeong;Park, Jin-Ho;Cho, Jung-Hee;Kim, Do-Hoon;Baek, Ju-Hyun;Kim, Hyo-Jin;Lee, Ki-Yong;Kim, Sang-Du;Kim, Young-Choong;Sung, Sang-Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.3
    • /
    • pp.199-202
    • /
    • 2008
  • A high performance liquid chromatographic (HPLC) method for the simultaneous determination of hesperidin and glycyrrhizin was established for the quality control of traditional herbal medicinal preparation, Pyungwi-san (PWS). Separation and quantification were successfully achieved with a Waters XTerra RP18 column ($5{\mu}m$, 4.6 mm I.D. ${\times}$ 150 mm) by gradient elution of a mixture of acetonitrile and water containing 0.03% phosphoric acid (pH 2.03) at a flow rate of 1.0 ml/min. The diode-array UV/vis detector (DAD) was used for the detection and the wavelength for quantification was set at 230 nm. The presence of hesperidin and glycyrrhizin in this extract was ascertained by retention time, spiking with each authentic standard and UV spectrum. All four compounds showed good linearity $(r^2>0.995)$ in a relatively wide concentration ranges. The R.S.D. for intra-day and inter-day precision was less than 7.0% and the limits of detection (LOD) were less than 60 ng. The mean recovery of each compound was 99.0-105.6% with R.S.D. values less than 4.0%. This method was successfully applied to the determination of contents of hesperidin and glycyrrhizin in three commercial products of PWS. These results suggest that the developed HPLC method is simple, effective and could be readily utilized as a quality control method for commercial PWS products.

Simultaneous Analysis of Pesticides in Aqueous Sample by HF-LPME (HF-LPME를 이용한 수용액 시료 내 농약의 동시 분석)

  • Nam, Jang-Woo;Lee, Kang-Jin;Myung, Seung-Woon
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.5
    • /
    • pp.583-590
    • /
    • 2012
  • The HF (Hollow fiber) extraction method was optimized to analysis seven species of pesticides in aqueous sample and analyzing samples by GC/MS. Hollow fiber extraction showed good efficiency when it was conducted under these conditions: organic solvent was toluene and agitation speed was 1200 rpm. The 15% concentration of NaCl was optimized when it was experimented between 5% and 25%. The equilibrium time was determined at 15 minutes. The pH 5 showed the best effect on the extraction efficiency. The linearities of calibration curves of seven species were good with correlation of regression ($r^2$) over 0.995 when they were experimented over a concentration range of $5{\mu}g/L$ to $50{\mu}g/L$. The analytical data exhibited the detection of limits (LODs) range of $0.37{\mu}g/L$ to $1.23{\mu}g/L$ and the limit of quantification (LOQs) range of $1.19{\mu}g/L$ to $3.91{\mu}g/L$. The optimized HF-LPME extraction method provides a simple and effective preparation and requires small amount of organic solvents and samples compared to conventional pre-treatment methods.

Simultaneous Determination of Tetracycline Antibiotics by 3-Phase Hollow Fiber-Liquid Phase Microextraction (HF-LPME) and HPLC-UV/Vis (3-상 속빈 섬유-액체상 미량추출법(HF-LPME)과 HPLC-UV/Vis을 이용한 Tetracycline류 항생제 동시분석)

  • Oh, Woong Kyo;Myung, Seung-Woon
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.6
    • /
    • pp.535-542
    • /
    • 2014
  • A simple and efficient preconcentration method was developed using three-phase liquid phase microextraction prior to HPLC-UV for simultaneous extraction and determination of tetracycline antibiotics (tetracycline, oxytetracycline, and chlortetracycline). The tetracycline antibiotics were separated simultaneously on a column ($C_8$, $3.0{\times}150mm$, $3{\mu}m$) with high selectivity and sensitivity using gradient elution. Under optimized conditions (extraction solvent, heptanal; pH of donor, 9.0; pH of acceptor, 1.0; stirring speed, 700 rpm; NaCl salt, 0%; and extraction time, 60 min), enrichment factors (EF) were between 5.6 and 22.3. The limit of detection (LOD) and limit of quantitation (LOQ) in the spiked urine matrix were in the concentration range of $0.08{\sim}0.8{\mu}g/mL$ and $0.4{\sim}1.6{\mu}g/mL$, respectively. The calibration curves were linear within the range of $0.1{\sim}32{\mu}g/mL$ with the square of the correlation coefficient being more than 0.995. The precision (as a relative standard deviation, RSD) and accuracy (as a relative recovery) within working range were 1.3~9.1% and 84~118%, respectively.

Analysis Method of N-Nitrosamines in Human Urine by LC-MS/MS System (LC-MS/MS 시스템을 이용한 소변 중 N-니트로사민류 분석법 확립)

  • Park, Na-Youn;Jung, Woong;Kho, Younglim
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.2
    • /
    • pp.51-56
    • /
    • 2017
  • N-nitrosamines are the nitroso compounds which are produced by nitrosation reactions of the secondary amine and nitrite under acidic conditions. Approximately 300 species of N-nitrosamine have been tested for carcinogenicity in laboratory experiments, with 90% of them demonstrated carcinogenic effects different animal species, including higher primates. In 1978, IARC classified NDMA and NDEA as Group 2A, and NDPA, NDBA, NPIP, NPYR and NMOR as Group 2B. In this study, we established pretreatment and analytical method for N-nitrosamines (NDMA, NDEA, NMEA, NDPA, NDBA, NPIP, NPYR and NMOR) in human urine for biological monitoring of N-nitrosamines. The analytes were extracted using solid phase extraction (SPE), then quantitative analysis was performed by LC-(APCI)-MS/MS. The accuracies of the established method were between 85.8~108.7% and precisions were lower than 20%. The limit of detection (LOD) were between 0.0002 (NDBA) and 0.0793 (NDMA) ng/ml. The linearity obtained was satisfying for the 8 N-nitrosamines, with a coefficient of determination ($r^2$) higher than 0.999. The mean concentrations of N-nitrosamines in the urine were 2.645 mg/g creatinine for NDMA, 0.067 mg/g creatinine for NDEA, 0.009 mg/g creatinine for NMEA, 0.011 mg/g creatinine for NDBA, 0.271 mg/g creatinine for NPIP and 0.413 mg/g creatinine for NPYR. NDPA and NMOR were not detected. It can be used as a instrumental methodology for evaluation and risk assessment of human exposure to N-nitrosamines for the further research.

Identification of Quantitative Trait Loci Associated with Isoflavone Contents in Soybean Seed

  • Kim Myung Sik;Park Min Jung;Hwang Jung Gyu;Jo Soo Ho;Ko Mi Suk;Chung Ill Min;Chung Jong Il
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.5
    • /
    • pp.423-428
    • /
    • 2004
  • Soybean seeds contain high amounts of isoflavones that display biological effects and isoflavone content of soybean seed can vary by year, environment, and genotype. Objective of this study was to identify quantitative trait loci that underlie isoflavone content in soybean seeds. The study involved 85 $F_2$ populations derived from Korean soybean cultivar 'Kwangkyo' and wild type soybean 'IT182305' for QTL analysis associated with isoflavone content. Isoflavone content of seeds was determined by HPLC. The genetic map of 33 linkage groups with 207 markers was constructed. The linkage map spanned 2,607.5 cM across all 33 linkage groups. The average linkage distance between pair of markers among all linkage groups was 12.6 cM in Kosambi map units. Isoflavone content in $F_2$ generations varied in a fashion that suggested a continuous, polygenic inheritance. Eleven markers (4 RAPD, 3 SSR, 4 AFLP) were significantly associated with isoflavone content. Only two markers, Satt419 and CTCGAG3 had F-tests that were significant at P<0.01 in $F_2$ generation for isoflavone content. Interval mapping using the $F_2$ data revealed only two putative QTLs for isoflavone content. The peak QTL region on linkage group 3, which was near OPAG03c, explained $14\%$ variation for isoflavone content. The peak QTL region on linkage group 5, which was located near OPN14 accounted for $35.3\%$ variation for isoflavone content. Using both Map-Maker-QTL $(LOD{\geq}2.0)$ and single-factor analysis $(P{\leq}0.05)$, one marker, CTCGAG3 in linkage group 3 was associated with QTLs for isoflavone content. This information would then be used in identification of QTLs for isoflavone content with precision

Development of Analytical Method for Rutin in Buckwheat Plant using High Performance Liquid Chromatography (메밀 식물체 함유 Rutin의 HPLC 분석방법 개발)

  • Choung Myoung-Gun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.spc1
    • /
    • pp.181-186
    • /
    • 2005
  • This experiment was conducted to know the appropriate methods for extraction and determination of rutin contained buckwheat plants. The efficient HPLC analytical condition of rutin contained buckwheat plants was developed. The gradient elution employed a $250mm\times4.6mm$ i.d. Tosoh ODS 120T column. The gradient system was used two mobile phases. A gradient elution was performed with mobile phase A, consisting of $2\%$ Acetic $acid-45\%$ Acetonitrile, and mobile phase B, comprising $2\%$ aqueous acetic acid, and delivered at a flow rate of 1mL/min as follows: 0-18 min, $50-100\%$ A; 18-20 min, $100-50\%$ A; 20-22 min, $50\%$ A. The UV detection wavelength was set at 355 nm. The limit of detection (LOD) for rutin standard compound was 20 ng/mL. And, the higher content of rutin in the extracts was obtained by $80^{\circ}C$ reflex extraction for 120 min. from plants of buckwheat using ethanol.

Different expression levels of OsPLS1 control leaf senescence period between indica and japonica-type rice

  • Shin, Dongjin;Kim, Tae-Hun;Lee, Ji-Yun;Cho, Jun-Hyeon;Song, You-Chun;Park, Dong-Soo;Oh, Myeong-Gyu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.98-98
    • /
    • 2017
  • Leaf senescence is the process of aging in plants. Chlorophyll degradation during leaf senescence has the important role translocating nutrients from leaves to storage organs. The functional stay-green with slow leaf yellowing and photosynthesis activity maintenance has been considered one of strategy for increasing crop productivity. Here, we have identified two QTLs on chromosome 9 and 10 for leaf senescence with chlorophyll content of RIL population derived from a cross between Hanareum 2, early leaf senescence Indica-type variety, and Unkwang, delayed leaf senescence Japonica variety. Among these QTLs, we chose qPLS1 QTL on chromosome 9 for further study. qPLS1 was found to explain 14.4% of the total phenotypic variation with 11.2 of LOD score. Through fine-mapping approach, qPLS1 QTL locus was narrowed down to about 25kb in the marker interval between In/del-4-7-9 and In/del-5-9-4. There are 3 genes existed within 25kb of qPLS1 locus: LOC_Os09g36200, LOC_Os09g36210, and LOC_Os09g36220. Among these genes, transcript level of LOC_Os09g36200 was increased during the leaf senescence stage and the expression level of LOC_Os09g36200 in Indica was higher than in Japonica. Finally, we chose LOC_Os09g36200 as candidate gene and renamed it as OsPLS1-In and OsPLS1-Jp from Indica- and Japonica-type rice, respectively. OsPLS1-In and OsPLS1-Jp overexpressing transgenic plants showed both early leaf senescence phenotype. These results indicate that OsPLS1 functions in chlorophyll degradation and the difference of expression level of OsPLS1 cause the difference of leaf senescence between Indica and Japonica in rice.

  • PDF

The development and validation of a novel liquid chromatography tandem mass spectrometry (LC-MS/MS) procedure for the determination of fluoroquinolones residues in chicken muscle using modified QuEChERS (quick, easy, cheap, effective, rugged and safe) method

  • Park, Sunjin;Kim, Hyobi;Choi, Byungkook;Hong, Chung-Oui;Lee, Seon-Young;Jeon, Inhae;Lee, Su-Young;Kwak, Pilhee;Park, Sung-Won;Kim, Yong-Sang;Lee, Kwang-jick
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.4
    • /
    • pp.289-296
    • /
    • 2019
  • A novel rapid procedure with liquid chromatography tandem mass spectrometry (LC-MS/MS) detection has been developed by changing various conditions including sample preparation such as QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) methodology. This work has been involved the optimization and validation of detection method for fluoroquinolones which are widespread used in livestock especially in the chicken. Five grams of homogenized chicken muscle were extracted with QuEChERS EN and acetonitrile containing 5% formic acid and cleaned with anhydrous magnesium sulfate and C18 sorbent. The separation was performed on Acquity UPLC HSS T3 (2.1 mm×100 mm, 1.8 ㎛) column. The mobile phase A and B were composed of water containing 0.1% formic acid and acetonitrile containing 0.1% formic acid, respectively. Flow rate was 0.25 mL/min and column temperate was 40℃. LC-MS/MS with multiple reaction monitoring has been optimized for ten fluoroquinolones (ciprofloxacin, danofloxacin, difloxacin, enrofloxacin, marbofloxacin, norfloxacin, ofloxacin, orbifloxacin, pefloxacin and sarafloxacin). The method developed in this study has been presented good linearity with correlation coefficient (R2) of 0.9971~0.9998. LOD and LOQ values ranged from 0.09 to 0.76 ppb and from 0.26 to 2.29 ppb, respectively. The average recoveries were from 77.46 to 111.83% at spiked levels of 10.0 and 20.0 ㎍/kg. Relative standard deviation (%) ranged 1.28~11.90% on intra-day and 3.10~8.38 % on inter-day, respectively. This analysis method was applicable to the livestock residue laboratories and was expected to be satisfactory for the residue surveillance system.

Simultaneous Determination of Aflatoxins and Ochratoxin A in Pork by LC-MS/MS (LC-MS/MS를 이용한 돼지고기 중 총아플라톡신 및 오크라톡신 A 동시분석법 확립)

  • Paek, Ockjin;Park, Songyi;Park, Ki Hun;Kim, Sheen-Hee;Suh, Saejung;Yoon, Hae Jung
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.3
    • /
    • pp.194-200
    • /
    • 2016
  • Aflatoxins and ochratoxin A (AFTs and OTA) are secondary fungal metabolites produced by several moulds, mainly by Aspergillus flavus by Aspergillus ochraceus and Penicillium verrucosum, and these toxins can be transferred to animals and humans through the ingestion of contaminated feed and food. This study was to develop the analytical method for determination the levels of AFTs ($B_1$, $B_2$, $G_1$ and $G_2$) and OTA in pork. The AFTs and OTA were analyzed simultaneously by electrospray ionization in positive ion mode and mass reaction monitoring (MRM) after solid phase extract (SPE) columns clean-up. Performance characteristics, such as accuracy, precision, linear range, limit of detection (LOD) and quantification (LOQ), were also determined. Matrix-matched standard calibration was used for quantification, obtaining the recoveries in the range of 67.3~108.2% with the relative standard deviations of < 20%. Limits of detection and quantification were also estimated, obtaining the limits of quantification ranged in $0.7{\sim}1.3{\mu}g/kg$. The results of the inter-day study, which was performed with pork samples for 3 days, showed an accuracy of 92.0~109.9%. The precisions (expressed as relative standard deviation values) for the inter day variation were 2.6~17.8%. The method developed in this study was able to carry out the analysis with the satisfactory intensity and accuracy.