Browse > Article

Identification of Quantitative Trait Loci Associated with Isoflavone Contents in Soybean Seed  

Kim Myung Sik (Department of Agronomy, Research Institute of Life Sci., Gyeongsang National University)
Park Min Jung (Department of Agronomy, Research Institute of Life Sci., Gyeongsang National University)
Hwang Jung Gyu (Department of Agronomy, Research Institute of Life Sci., Gyeongsang National University)
Jo Soo Ho (Department of Agronomy, Research Institute of Life Sci., Gyeongsang National University)
Ko Mi Suk (Department of Agronomy, Research Institute of Life Sci., Gyeongsang National University)
Chung Ill Min (Department of Applied Life Science, Konkuk University)
Chung Jong Il (Department of Agronomy, Research Institute of Life Sci., Gyeongsang National University)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.49, no.5, 2004 , pp. 423-428 More about this Journal
Abstract
Soybean seeds contain high amounts of isoflavones that display biological effects and isoflavone content of soybean seed can vary by year, environment, and genotype. Objective of this study was to identify quantitative trait loci that underlie isoflavone content in soybean seeds. The study involved 85 $F_2$ populations derived from Korean soybean cultivar 'Kwangkyo' and wild type soybean 'IT182305' for QTL analysis associated with isoflavone content. Isoflavone content of seeds was determined by HPLC. The genetic map of 33 linkage groups with 207 markers was constructed. The linkage map spanned 2,607.5 cM across all 33 linkage groups. The average linkage distance between pair of markers among all linkage groups was 12.6 cM in Kosambi map units. Isoflavone content in $F_2$ generations varied in a fashion that suggested a continuous, polygenic inheritance. Eleven markers (4 RAPD, 3 SSR, 4 AFLP) were significantly associated with isoflavone content. Only two markers, Satt419 and CTCGAG3 had F-tests that were significant at P<0.01 in $F_2$ generation for isoflavone content. Interval mapping using the $F_2$ data revealed only two putative QTLs for isoflavone content. The peak QTL region on linkage group 3, which was near OPAG03c, explained $14\%$ variation for isoflavone content. The peak QTL region on linkage group 5, which was located near OPN14 accounted for $35.3\%$ variation for isoflavone content. Using both Map-Maker-QTL $(LOD{\geq}2.0)$ and single-factor analysis $(P{\leq}0.05)$, one marker, CTCGAG3 in linkage group 3 was associated with QTLs for isoflavone content. This information would then be used in identification of QTLs for isoflavone content with precision
Keywords
soybean; isoflavone; genetic map; molecular marker; QTL;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Diers, B W., R. Keim, W R Fehr, and R C. Shoemaker 1992 RFLP analysis of soybean seed protein and oil content Theor Appl Genet 83 : 608-612
2 Kim, H S., S. H. Lee, and Y. H. Lee. 2000. A genetic linkage map of soybean with RFLP, RAPD, SSR, and morphological markers Kor J. Crop Sci. Vol. 45(2) . 123-127
3 Lee, S. H , M A. Bailey, M. A R Mian, T E Carter, Jr , D A. Ashley, R. S Hussey, W. A Parrott, and H R Boerma. 1996 Molecular markers associated with soybean plant height, lodging, and maturity across locations. Crop Sci. 36(3) . 728-735   DOI   ScienceOn
4 Mansur, L. M., K. G. Lark, H. Kross, and A. Oliveira. 1993 Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theor. Appl. Genet 86 . 907-913
5 Meksem, K , V N NJiti, W J Banz, M. J. Iqbal, M M. Kassem, D. L. Hyten, J. Yuang, T. A Winters, and D. A. Lightfoot 2001 Genomic regions that underline soybean seed isoflavone content J. of Biomedicine and Biotechnology 1(1) : 38-44   DOI   ScienceOn
6 Yang K J and I. M. Chung. 2001. Yearly and genotypic variations in seed isoflavone content of local soybean cultivars. Korean J. Crop Sci 46(2) 139-144
7 Cregan, P.B , T Jarvik, A L. Bush, R. C Shoemaker, K. G Lark, A. L. Kahler, N. Kaya, T. T VanToai, D G Lohnes, J. Chung, and J. E. Specht. 1999. An integrated genetic linkage map of the soybean genome. Crop Sci. 39 . 1464-1490   DOI
8 Mather, K. and J L Jinks. 1971. Bimmetrical Genetics. Chapman and Hall, London
9 Tikkanen, M. J., K Wahala, S Ojala, V Wihma, and H. Adlercreutz. 1998. Effect of soybean phytoestrogen intake on low density lipoprotein oxidation resistance. Proc Nat Acad Sci. U.S A. 95 : 3106-3110   DOI   ScienceOn
10 Lincoln, S., M. Daly, and E. Lander. 1992 Mapping genes controlling quantitative traits with MAPMAKER/QTL Whitehead Institutue Technical Report. Ed 2
11 Lee, S H., K Y. Park, H S Lee, and H R. Boerma. 1999. Identification of quantitative trait loci associated with traits of soybean for sprout Korean J Crop Sci 44(2) : 166-170
12 Kim, M. S , Y. J. Cho, D. J. Park, S. J. Han, J. H. Oh, J. G. Hwang, M. S. Ko, and J. I. Chung. 2003. Construction of genetic linkage map for Korean soybean genotypes using molecular markers Korean J. Crop Sci 48(4) : 297-302
13 Yamanaka, N , S. Ninomiya, M Hoshi, Y. Tsubokura, M Yano, Y. Nagamura, T. Sasaki, and K Harada. 2001. An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology, and regions of segregation distortion DNA Research 8 61-72   DOI   ScienceOn
14 Kudou, S , Y , Fleury, D. Welti, D Magnolato, T Uchida, K Kitamura, and K. Okubo. 1991. Malonyl isoflavone glycosides in soybean seeds (Glycine max MERRILL). Agric Biol Chem 55 . 2227-2233   DOI
15 Barnes, S., H Kim, and J Xu 1999. Soy the prevention and treatment of chronic disease. Annals of the Brazilian Soybean Congress, pp 265-308. I Brazilian Soybean Congress, Londrina, PR, Brazil
16 Eldndge, A C and W. F Kwolek. 1983 Soybean isoflavons: effect of environment and vanety on composition. J. Agric. Food Chem 31 : 394-396   DOI   PUBMED
17 Chung, J., H. L. Babka, G L. Graef, P.E. Staswick, D. J. Lee, P. B. Cregan, R C Shoemaker, and J. E. Specht. 2003. The seed protein, oil, and yield QTL on soybean linkage Group I Crop Sci. 43 : 1053-1067   DOI
18 Wang, H J. and P. A. Murphy 1994. Isoflavone content in commercial soybean foods. J Agric Food Chern 42: 1666-1673   DOI   ScienceOn
19 Keim, P, B. W. Diers, T C Olson, and R C Shoemaker 1990 RFLP mapping in soybean. Association between marker Ioci and variation in quantitative traits Genetics 126 . 735-742
20 Kim, H. S., S. H. Lee, K. Y. Park, and Y. H. Lee. 2000. Identification of quantitative trait loci associated with seed size and weight in soybean. Kor. J. Crop Sci. 45(4) : 227-231
21 Shoemaker, R C and J E. Specht 1995 Integration of the soybean molecular and classical genetic linkage groups Crop Sci. 35 : 436-446   DOI   ScienceOn
22 Kosambi, D. D. 1944. The estimation of map distance from recombination values. Ann. Eugen. 12 . 172-175
23 Kurzer, M S 2000. Hormonal effects of soy isoflavones. studies in premenopausal and postmenopausal women, J. Nutr. 130 : 660S-661S   DOI
24 Erdman , J. W. Jr. and S. M Potter. 1997. Soy and bone health. The Soy Connection 5(2) 1-4
25 Lander E. S and D. Botstein. 1989. Mapping mendelian factors underlying quantitative traits using RFLP likage maps. Genetics 121 185-199
26 Lucimara, c., N. D Piovesan, L. K Naoe, I. C Jose, J. M. S Viana, M A Moreira, and E. G. D. Barros. 2004. Genetic parameters relating isoflavone and protein content in soybean seeds. Euphytica 138 . 55-60   DOI   ScienceOn
27 Saghai-Maroof, M. A, K. M Soliman, R A. Jorgensen, and R W Allard. 1984 Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal Iocation and population dynamics. Proc Natl Acad Sci. 81 . 8014-8018   DOI   ScienceOn
28 Keim, P., J. M. Schupp, S. E. Travis, K. Clayton, T. Zhu, L. Shi, A. Ferreira, and D. M. Webb 1997 A high-density soybean genetic map based on AFLP markers Crop Sci. 37 537-543   DOI   ScienceOn