• 제목/요약/키워드: location parameter

검색결과 574건 처리시간 0.024초

베이지안 다중 비교차 분위회귀 분석 기법을 이용한 비정상성 빈도해석 모형 개발 (A Development of Nonstationary Frequency Analysis Model using a Bayesian Multiple Non-crossing Quantile Regression Approach)

  • 오랑치맥 솜야;김용탁;권영준;권현한
    • 한국연안방재학회지
    • /
    • 제4권3호
    • /
    • pp.119-131
    • /
    • 2017
  • Global warming under the influence of climate change and its direct impact on glacial and sea level are known issue. However, there is a lack of research on an indirect impact of climate change such as coastal structure design which is mainly based on a frequency analysis of water level under the stationary assumption, meaning that maximum sea level will not vary significantly over time. In general, stationary assumption does not hold and may not be valid under a changing climate. Therefore, this study aims to develop a novel approach to explore possible distributional changes in annual maximum sea levels (AMSLs) and provide the estimate of design water level for coastal structures using a multiple non-crossing quantile regression based nonstationary frequency analysis within a Bayesian framework. In this study, 20 tide gauge stations, where more than 30 years of hourly records are available, are considered. First, the possible distributional changes in the AMSLs are explored, focusing on the change in the scale and location parameter of the probability distributions. The most of the AMSLs are found to be upward-convergent/divergent pattern in the distribution, and the significance test on distributional changes is then performed. In this study, we confirm that a stationary assumption under the current climate characteristic may lead to underestimation of the design sea level, which results in increase in the failure risk in coastal structures. A detailed discussion on the role of the distribution changes for design water level is provided.

유도초음파를 활용한 격납건물 라이너 플레이트 상시감시 모니터링 검사를 위한 토모그래피 영상화 (Tomographic Imaging for Structural Health Monitoring Inspection of Containment Liner Plates using Guided Ultrasonic)

  • 박준필;조윤호
    • 한국압력기기공학회 논문집
    • /
    • 제16권2호
    • /
    • pp.1-9
    • /
    • 2020
  • Large-scale industrial facility structures continue to deteriorate due to the effects of operating and environmental conditions. The problems of these industrial facilities are potentially causing economic losses, environmental pollution, casualties, and national losses. Accordingly, in order to prevent disaster accidents of large structures in advance, the necessity of diagnosing structures using non-destructive inspection techniques is being highlighted. The defect occurrence, location and defect type of the structure are important parameters for predicting the remaining life of the structure, so continuous defect observation is very important. Recently, many researchers have been actively researching real-time monitoring technology to solve these problems. Structure Health Monitoring Inspection is a technology that can identify and respond to the occurrence of defects in real time, but there is a limit to check the degree of defects and the direction of growth of defects. In order to compensate for the shortcomings of these technologies, the importance of defect imaging techniques is emerging, and in order to find defects in large structures, a method of inspecting a wide range using guided ultrasonic is effective. The work presented here introduces a calculation for the shape factor for evaluation of the damaged area, as well as a variable β parameter technique to correct a damaged shape. Also, we perform research in modeling simulation and an experiment for comparison with a suggested inspection method and verify its validity. The curved structure image obtained by the advanced RAPID algorithm showed a good match between the defect area and the shape.

다중 심층신경망을 이용한 심전도 파라미터의 획득 및 분류 (Acquisition and Classification of ECG Parameters with Multiple Deep Neural Networks)

  • 김지운;박성민;최성욱
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권6호
    • /
    • pp.424-433
    • /
    • 2022
  • As the proportion of non-contact telemedicine increases and the number of electrocardiogram (ECG) data measured using portable ECG monitors increases, the demand for automatic algorithms that can precisely analyze vast amounts of ECG is increasing. Since the P, QRS, and T waves of the ECG have different shapes depending on the location of electrodes or individual characteristics and often have similar frequency components or amplitudes, it is difficult to distinguish P, QRS and T waves and measure each parameter. In order to measure the widths, intervals and areas of P, QRS, and T waves, a new algorithm that recognizes the start and end points of each wave and automatically measures the time differences and amplitudes between each point is required. In this study, the start and end points of the P, QRS, and T waves were measured using six Deep Neural Networks (DNN) that recognize the start and end points of each wave. Then, by synthesizing the results of all DNNs, 12 parameters for ECG characteristics for each heartbeat were obtained. In the ECG waveform of 10 subjects provided by Physionet, 12 parameters were measured for each of 660 heartbeats, and the 12 parameters measured for each heartbeat well represented the characteristics of the ECG, so it was possible to distinguish them from other subjects' parameters. When the ECG data of 10 subjects were combined into one file and analyzed with the suggested algorithm, 10 types of ECG waveform were observed, and two types of ECG waveform were simultaneously observed in 5 subjects, however, it was not observed that one person had more than two types.

Near-Infrared Photopolarimetry of Large Main Belt Asteroid - (4) Vesta

  • Bach, Yoonsoo P.;Ishiguro, Masateru;Takahashi, Jun;Naito, Hiroyuki;Kwon, Jungmi;Kuroda, Daisuke
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.45.1-45.1
    • /
    • 2021
  • The polarization degree as a function of phase angle (the Sun-target-observer's angle), so-called the polarimetric phase curves (PPC), have provided priceless information on asteroids' albedos since B. Lyot (1929). Succeeding experimental works in 1970s have confirmed the Umow law: There is a universal and strong correlation between the albedo and the PPC slope (slope of the tangential line at the zero of the PPC at phase angle ~ 20 degrees). Experiments in 1990s (ref [1]), on the other hand, have demonstrated that the negative branch of PPC is dependent on the size parameter (X ~ π * particle-size / wavelength), especially when X <~5. The change in particle size changed the minimum polarization degree, location of the minimum, and the width of the negative branch (called the inversion angle). From polarimetry[2] and spectroscopy[3], large asteroids are expected to be covered with fine (<~ 10 ㎛ size) particles due to the gravity. The size parameters are X ~ 30 at the optical wavelength (λ ~ 0.5 ㎛) and X ~ 10 in near-infrared (J, H, Ks bands; λ ~ 1.2-2.2 ㎛), if the representative particle size of 5 ㎛ is considered. Accordingly, the near-infrared polarimetry has a great potential to validate the idea in ref[1]. We conducted near-infrared photopolarimetry of the large asteroid (4) Vesta using the Nishiharima Infrared Camera (NIC) at Nishi-Harima Astronomical Observatory (NHAO). NIC allows simultaneous polarimetric measurements in J, H, and Ks bands, and thus the change of PPC is obtained for three different size parameters. As a result, we found a signature of the change in the negative branch in the PPC of asteroid (4) Vesta. We will introduce our observation and the results and give an interpretation of the regolith on Vesta.

  • PDF

심층 학습을 통한 암세포 광학영상 식별기법 (Identification of Multiple Cancer Cell Lines from Microscopic Images via Deep Learning)

  • 박진형;최세운
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.374-376
    • /
    • 2021
  • 임상에서 암 관련 질병의 확진을 위해 영상장비를 이용한 기초 진단 이후 추가적인 방법으로 생체검사 등을 이용한 병리적 검사가 필수적이다. 이러한 생체검사를 진행하기 위해서는 전문지식을 가진 종양학자, 임상병리사 등의 도움과 최소한의 소요시간은 확진을 위해 반드시 필요하다. 최근 들어, 인공지능을 활용한 암세포의 자동분류가 가능한 시스템 구축에 관련된 연구가 활발하게 진행되고 있다. 하지만, 이전 연구들은 한정된 알고리즘을 기반으로 하여 세포의 종류와 정확도에 한계를 보인다. 본 연구에서 심층 학습의 일종인 합성곱 신경망을 통해 총 4가지의 암세포를 식별하는 방법을 제안한다. 세포 배양을 통해 얻은 광학영상을 OpenCV를 사용하여 세포의 위치 식별 및 이미지 분할과 같은 전처리 수행 후, EfficientNet을 통해 학습하였다. 모델은 EfficientNet을 기준으로 다양한 hyper parameter를 사용하고, InceptionV3을 학습하여 성능을 비교분석 하였다. 그 결과 96.8%의 높은 정확도로 세포를 분류하는 결과를 보였으며, 이러한 분석방법은 암의 확진에 도움이 될 것으로 기대한다.

  • PDF

Partial-isolation LDMOS의 항복전압과 온저항 분석 (Breakdown Voltage and On-resistance Analysis of Partial-isolation LDMOS)

  • 김신욱;이명진
    • 전기전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.567-572
    • /
    • 2023
  • 본 논문에서는 Partial isolation lateral double diffused metal oxide semiconductor(Pi-LDMOS)의 항복전압에 대해 시뮬레이션을 통해 분석하였다. 항복전압 변화는 Partial buried oxide(P-BOX)의 다양한 파라미터(길이, 두께, 위치)에 따라 조사되었고, 그 메커니즘에 대해 명기하였다. 또한 항복전압과 trade-off 관계에 있는 온저항의 변화를 P-BOX 파라미터 변화에 따라 분석하였고 Figure of merit(FOM)을 계산하여 비교하였다. 제안된 구조에서 Lbox=5㎛, tbox=2㎛, Lbc=2㎛일 경우 138V의 가장 높은 항복전압을 나타내었고, Lbox=5㎛, tbox=1.6㎛, Lbc=2㎛일 경우 가장 높은 FOM을 나타내었다. 이는 conventional LDMOS 대비 항복전압은 123%, FOM은 3.89배 향상된 수치이다. 따라서 Pi-LDMOS는 높은 항복전압과 FOM을 가져 Power IC의 안정적인 동작범위 향상에 기여할 수 있다.

Investigation of nonlinear vibration behavior of the stepped nanobeam

  • Mustafa Oguz Nalbant;Suleyman Murat Bagdatli;Ayla Tekin
    • Advances in nano research
    • /
    • 제15권3호
    • /
    • pp.215-224
    • /
    • 2023
  • Nonlinearity plays an important role in control systems and the application of design. For this reason, in addition to linear vibrations, nonlinear vibrations of the stepped nanobeam are also discussed in this manuscript. This study investigated the vibrations of stepped nanobeams according to Eringen's nonlocal elasticity theory. Eringen's nonlocal elasticity theory was used to capture the nanoscale effect. The nanoscale stepped Euler Bernoulli beam is considered. The equations of motion representing the motion of the beam are found by Hamilton's principle. The equations were subjected to nondimensionalization to make them independent of the dimensions and physical structure of the material. The equations of motion were found using the multi-time scale method, which is one of the approximate solution methods, perturbation methods. The first section of the series obtained from the perturbation solution represents a linear problem. The linear problem's natural frequencies are found for the simple-simple boundary condition. The second-order part of the perturbation solution is the nonlinear terms and is used as corrections to the linear problem. The system's amplitude and phase modulation equations are found in the results part of the problem. Nonlinear frequency-amplitude, and external frequency-amplitude relationships are discussed. The location of the step, the radius ratios of the steps, and the changes of the small-scale parameter of the theory were investigated and their effects on nonlinear vibrations under simple-simple boundary conditions were observed by making comparisons. The results are presented via tables and graphs. The current beam model can assist in designing and fabricating integrated such as nano-sensors and nano-actuators.

Elastic local buckling behaviour of corroded cold-formed steel columns

  • Nie Biao;Xu Shanhua;Hu WeiCheng;Chen HuaPeng;Li AnBang;Zhang ZongXing
    • Steel and Composite Structures
    • /
    • 제48권1호
    • /
    • pp.27-41
    • /
    • 2023
  • Under the long-term effect of corrosive environment, many cold-formed steel (CFS) structures have serious corrosion problems. Corrosion leads to the change of surface morphology and the loss of section thickness, which results in the change of instability mode and failure mechanism of CFS structure. This paper mainly investigates the elastic local buckling behavior of corroded CFS columns. The surface morphology scanning test was carried out for eight CFS columns accelerated corrosion by the outdoor periodic spray test. The thin shell finite element (FE) eigen-buckling analysis was also carried out to reveal the influence of corrosion surface characteristics, corrosion depth, corrosion location and corrosion area on the elastic local buckling behaviour of the plates with four simply supported edges. The accuracy of the proposed formulas for calculating the elastic local buckling stress of the corroded plates and columns was assessed through extensive parameter studies. The results indicated that for the plates considering corrosion surface characteristics, the maximum deformation area of local buckling was located at the plates with the minimum average section area. For the plates with localized corrosion, the main buckling shape of the plates changed from one half-wave to two half-wave with the increase in corrosion area length. The elastic local buckling stress decreased gradually with the increase in corrosion area width and length. In addition, the elastic local buckling stress decreased slowly when corrosion area thickness was relatively large, and then tends to accelerate with the reduction in corrosion area thickness. The distance from the corrosion area to the transverse and longitudinal centerline of the plate had little effect on the elastic local buckling stress. Finally, the calculation formula of the elastic local buckling stress of the corroded plates and CFS columns was proposed.

Numerical investigation of turbulence models with emphasis on turbulent intensity at low Reynolds number flows

  • Musavir Bashir;Parvathy Rajendran;Ambareen Khan;Vijayanandh Raja;Sher Afghan Khan
    • Advances in aircraft and spacecraft science
    • /
    • 제10권4호
    • /
    • pp.303-315
    • /
    • 2023
  • The primary goal of this research is to investigate flow separation phenomena using various turbulence models. Also investigated are the effects of free-stream turbulence intensity on the flow over a NACA 0018 airfoil. The flow field around a NACA 0018 airfoil has been numerically simulated using RANS at Reynolds numbers ranging from 100,000 to 200,000 and angles of attack (AoA) ranging from 0° to 18° with various inflow conditions. A parametric study is conducted over a range of chord Reynolds numbers for free-stream turbulence intensities from 0.1 % to 0.5 % to understand the effects of each parameter on the suction side laminar separation bubble. The results showed that increasing the free-stream turbulence intensity reduces the length of the separation bubble formed over the suction side of the airfoil, as well as the flow prediction accuracy of each model. These models were used to compare the modeling accuracy and processing time improvements. The K- SST performs well in this simulation for estimating lift coefficients, with only small deviations at larger angles of attack. However, a stall was not predicted by the transition k-kl-omega. When predicting the location of flow reattachment over the airfoil, the transition k-kl-omega model also made some over-predictions. The Cp plots showed that the model generated results more in line with the experimental findings.

Research on unsupervised condition monitoring method of pump-type machinery in nuclear power plant

  • Jiyu Zhang;Hong Xia;Zhichao Wang;Yihu Zhu;Yin Fu
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2220-2238
    • /
    • 2024
  • As a typical active equipment, pump machinery is widely used in nuclear power plants. Although the mechanism of pump machinery in nuclear power plants is similar to that of conventional pumps, the safety and reliability requirements of nuclear pumps are higher in complex operating environments. Once there is significant performance degradation or failure, it may cause huge security risks and economic losses. There are many pumps mechanical parameters, and it is very important to explore the correlation between multi-dimensional variables and condition. Therefore, a condition monitoring model based on Deep Denoising Autoencoder (DDAE) is constructed in this paper. This model not only ensures low false positive rate, but also realizes early abnormal monitoring and location. In order to alleviate the influence of parameter time-varying effect on the model in long-term monitoring, this paper combined equidistant sampling strategy and DDAE model to enhance the monitoring efficiency. By using the simulation data of reactor coolant pump and the actual centrifugal pump data, the monitoring and positioning capabilities of the proposed scheme under normal and abnormal conditions were verified. This paper has important reference significance for improving the intelligent operation and maintenance efficiency of nuclear power plants.