• Title/Summary/Keyword: locating

Search Result 885, Processing Time 0.026 seconds

Intelligent Diagnosis Assistant System of Capsule Endoscopy Video Through Analysis of Video Frames (영상 프레임 분석을 통한 대용량 캡슐내시경 영상의 지능형 판독보조 시스템)

  • Lee, H.G.;Choi, H.K.;Lee, D.H.;Lee, S.C.
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.2
    • /
    • pp.33-48
    • /
    • 2009
  • Capsule endoscopy is one of the most remarkable inventions in last ten years. Causing less pain for patients, diagnosis for entire digestive system has been considered as a most convenience method over a normal endoscope. However, it is known that the diagnosis process typically requires very long inspection time for clinical experts because of considerably many duplicate images of same areas in human digestive system due to uncontrollable movement of a capsule endoscope. In this paper, we propose a method for clinical diagnosticians to get highly valuable information from capsule-endoscopy video. Our software system consists of three global maps, such as movement map, characteristic map, and brightness map, in temporal domain for entire sequence of the input video. The movement map can be used for effectively removing duplicated adjacent images. The characteristic and brightness maps provide frame content analyses that can be quickly used for segmenting regions or locating some features(such as blood) in the stream. Our experiments show the results of four patients having different health conditions. The result maps clearly capture the movements and characteristics from the image frames. Our method may help the diagnosticians quickly search the locations of lesion, bleeding, or some other interesting areas.

  • PDF

A Blind Watermarking Algorithm using CABAC for H.264/AVC Main Profile (H.264/AVC Main Profile을 위한 CABAC-기반의 블라인드 워터마킹 알고리즘)

  • Seo, Young-Ho;Choi, Hyun-Jun;Lee, Chang-Yeul;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2C
    • /
    • pp.181-188
    • /
    • 2007
  • This paper proposed a watermark embedding/extracting method using CABAC(Context-based Adaptive Binary Arithmetic Coding) which is the entropy encoder for the main profile of MPEG-4 Part 10 H.264/AVC. This algorithm selects the blocks and the coefficients in a block on the bases of the contexts extracted from the relationship to the adjacent blocks and coefficients. A watermark bit is embedded without any modification of coefficient or with replacing the LSB(Least Significant Bit) of the coefficient with a watermark bit by considering both the absolute value of the selected coefficient and the watermark bit. Therefore, it makes it hard for an attacker to find out the watermarked locations. By selecting a few coefficients near the DC coefficient according to the contexts, this algorithm satisfies the robustness requirement. From the results from experiments with various kinds and various strengths of attacks the maximum error ratio of the extracted watermark was 5.02% in maximum, which makes certain that the proposed algorithm has very high level of robustness. Because it embeds the watermark during the context modeling and binarization process of CABAC, the additional amount of calculation for locating and selecting the coefficients to embed watermark is very small. Consequently, it is highly expected that it is very useful in the application area that the video must be compressed right after acquisition.

Air Temperature Decreasing Effects by Shading and Ventilation at Micro-scale Experiment Plots (소공간 실험구의 차광과 통풍에 의한 기온저감 효과)

  • Kim, Hyun-Cheol;Woo, Ji-Keun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.6
    • /
    • pp.39-48
    • /
    • 2010
  • The purpose of this study was to analyze air temperature decreasing effects by shading and ventilation at micro-scale experiment plots, especially focused on the Wet Bulb Globe Temperature (WBGT) in outdoor spaces. To monitor the time-serial changes of Dry-bulb Temperature (DT), Globe Temperature (GT) and Relative Humidity (RH) in the wind blocking and shading conditions, Two hexahedral steel frames were established on the open grass field, the dimension of each frame was 1.5m(W)${\times}$1.5m(L)${\times}$1.5m(H). Four vertical side of one frame was covered by transparent polyethylene film to prevent wind passing through (Wind break plot; WP). The top side of the other frame was covered with shading curtain which intercept 95% of solar light and energy (Shading plot; SP). And, Another vertical steel frame without any treatment preventing ventilation and sunlight was set up, which represents natural conditions (Control plot; CP). The major findings were as follows; 1. The average globe temperature (GT) was highest at WP showing $50.94^{\circ}C$ and lowest at SP showing $34.58^{\circ}C$. The GT of natural condition (SP) was $42.31^{\circ}C$ locating the midst between WP and SP. The difference of GT of each plot was about $8-16^{\circ}C$, which means the ventilation and shading has significant effect on decreasing the temperature. 2. WP showed the highest average dry-bulb temperature (DT) of $38.41^{\circ}C$ which apparently differ from SP and CP showing $31.94^{\circ}C$ and $33.15^{\circ}C$ respectively. The DT of SP and CP were nearly the same. 3. The average relative humidity (RH) was lowest at WP showing 15.21%, but SP and CP had similar RH 28.79%, 28.02% respectively. 4. The average of calculated WBGT were the highest at the WP ($27.61^{\circ}C$) and the lowest at the SP ($23.64^{\circ}C$). The CP ($25.49^{\circ}C$) was in the middle of the others. As summery, compared with natural condition (CP), the wind blocking increased about $2.11^{\circ}C$ WBGT, but the shading decreased about $1.84^{\circ}C$ WBGT. So It can be apparently said that the open space with much shading trees, sheltering furnitures and well-delivered wind corridor can reduce useless and even harmful energy for human outdoor activity considerably in outdoor spaces.

Geospatial Assessment of Frost and Freeze Risk in 'Changhowon Hwangdo' Peach (Prunus persica) Trees as Affected by the Projected Winter Warming in South Korea: II. Freezing Risk Index Based on Dormancy Depth as a Proxy for Physiological Tolerance to Freezing Temperature (겨울기온 상승에 따른 복숭아 나무 '장호원황도' 품종의 결과지에 대한 동상해위험 공간분석: II. 휴면심도로 표현한 생리적 내동성에 근거한 동해위험지수)

  • Kim, Jin-Hee;Kim, Soo-Ock;Chung, U-Ran;Yun, Jin-I.;Hwang, Kyu-Hong;Kim, Jung-Bae;Yoon, Ik-Koo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.213-220
    • /
    • 2009
  • In order to predict the risk of freeze injury for 'Changhowon Hwangdo' peach trees, we used the dormancy depth (i.e., the daily chill unit accumulation during the overwintering period) as a proxy for the short-term, physiological tolerance to freezing temperatures. A Chill-days model was employed and its parameters such as base temperature and chilling requirement were optimized for peach trees based on the 12 observational experiments during the 2008-2009 winter. The model predicted the flowering dates much closer to the observations than other models without considering dormancy depth, showing the strength of employing dormancy depth into consideration. To derive empirical equations for calculating the probabilistic freeze risk, the dormancy depth was then combined with the browning ratio and the budburst ratio of frozen peach fruit branches. Given the exact date and the predicted minimum temperature, the equations calculate the probability of freeze damages such as a failure in budburst or tissue browning. This method of employing dormancy depth in addition to freezing temperature would be useful in locating in advance the risky areas of freezing injury for peach trees production under the projected climate change.

Evaluation of the Accuracy of Grounding Impedance Measurement of Grounding Grid (접지그리드의 접지임피던스 측정의 정확도 평가)

  • Choi, Jong-Hyuk;Choi, Young-Chul;Jeong, Dong-Cheol;Kim, Dong-Seong;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.146-153
    • /
    • 2009
  • Recently, the common grounding systems are adapted in most large structures. Since the ground resistance is insufficient to evaluate the performance of grounding systems, it is needed to measure grounding impedance. Even though the methods of measuring grounding impedance of large grounding systems are presented in IEEE standard 81.2, but they have not been described in detail. In this paper, we present the accurate method of measuring grounding impedance based on the revised fall-of-potential method and measurement errors due to earth mutual resistance and ac mutual coupling depending on locating test electrodes at remote earth were examined for the 15[m]$\times$15[m] grounding grid. As a result, the measurement error due to earth mutual resistance is decreased when the distance to auxiliary electrodes increased. To get rid of measurement errors due to mutual coupling, the potential lead should be installed at a right angle to the current lead. When the angle between the potential and the current leads is an acute angle or an obtuse angle, the mutual couple voltage is positive or negative, respectively. Generally, the measurement errors due to mutual coupling with an obtuse angle route are lower than those with an acute angle route.

A Study on Added Filters for Reduction of Radiation Exposure Dose in Skull A-P Projection (머리부 전후방향촬영 시 방사선피폭선량 저감을 위한 부가여과판에 대한 연구)

  • Lee, Cho-Hee;Lim, Chang-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3117-3122
    • /
    • 2011
  • Skull A-P projections are the bi-product where the ESD (Entrance Surface Dose) for digital radiography is much higher than that conventional screen-film radiography. Therefore, the aim of this study was to reduce radiation doses to patients by using an added filter. This research focuses on the identification of the reduction of exposure to radiation based on the thickness of an added filter when applying the 'Skull A-P Projection' by using the 'Skull Phantom'. Also, an experiment was conducted to evaluate the qualitative decline of images through filtration. The measurement of one's exposed dose to radiation was executed by locating the 'Skull Phantom' on the position of the 'Skull AP,' while changing 16 kinds of added filters from 0.1 mmAl to 0.5 mmCu + 2.0 mmAl in terms of incident and penetrating doses. For the qualitative evaluation of images, a total number of 17 images have been acquired in the 'Skull Phantom' under the same conditions as those for the measurement of one's exposed dose. The acquired images have been evaluated by a radiological specialist. As a result, the images with a diagnostic value have been obtained by using such added filters as the compound filter of 0.2 mmCu +1.0 mmAl. The exposed dose absorbed on the 'Skull Phantom' is about 0.6 mGy. The value is only 12% of 5 mGy, the ESD value acquired on the 'Skull P-A Projection', which is recommended by the International Atomic Energy Agency (IAEA). As a result, depending on the parts of inspection, it is possible to reduce the patient's exposed dosage of radiation considerably by using an appropriate added filter.

Effects of Load Center of Gravity and Feet Positions on Peak EMG Amplitude at Low Back Muscles While Lifting Heavy Materials (중량물 들기 작업시 물체 무게중심 및 발의 위치가 허리 근육의 최대 EMG 진폭에 미치는 영향)

  • Kim, Sun-Uk;Han, Seung Jo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.3
    • /
    • pp.257-264
    • /
    • 2012
  • Objectives: This study's aims were to evaluate the effects of load center of gravity within an object lifted and feet placements on peak EMG amplitude acting on bilateral low back muscle groups, and to suggest adequate foot strategies with an aim to reducing low back pain incidence while lifting asymmetric load. Methods: The hypotheses that asymmetric load imposes more peak EMG amplitude on low back muscles contralateral to load center of gravity than symmetric load and maximum peak EMG amplitude out of bilateral ones can be relieved by locating one foot close to load center of gravity in front of the other were established based on biomechanics including safety margin model and previous researches. 11 male subjects were required to lift symmetrically a 15.8kg object during 2sec according to each conditions; symmetric load-parallel feet (SP), asymmetric load-parallel feet (AP), asymmetric load-one foot contralateral to load center of gravity in front of the other (AL), and asymmetric load-one foot ipsilateral to load center of gravity in front of the other (AR). Bilateral longissimus, iliocostalis, and multifidus on right and left low back area were selected as target muscles, and asymmetric load had load center of gravity 10cm deviated to the right from the center in the frontal plane. Results: Greater peak EMG amplitude in left muscle group than in right one was observed due to the effect of load center of gravity, and mean peak EMG amplitudes on both sides was not affected by load center of gravity because of EMG balancing effect. However, the difference of peak EMG amplitudes between both sides was significantly affected by it. Maximum peak EMG amplitude out of both sides and the difference of peak EMG amplitude between both sides could be reduced with keeping one foot ipsilateral to load center of gravity in front of the other while lifting asymmetric load. Conclusions: It was likely that asymmetric load lead to the elevated incidence of low back pain in comparison with symmetric load based on maximum peak EMG amplitude occurrence and greater imbalanced peak EMG amplitude between both sides. Changing feet positions according to the location of load center of gravity was suggested as one intervention able to reduce the low back pain incidence.

Leak Location Detection of Underground Water Pipes using Acoustic Emission and Acceleration Signals (음향방출 및 가속도 신호를 이용한 지하매설 상수도배관의 누수지점 탐지연구)

  • Lee, Young-Sup;Yoon, Dong-Jin;Jeong, Jung-Chae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.3
    • /
    • pp.227-236
    • /
    • 2003
  • Leaks in underground pipelines can cause social, environmental and economical problems. One of relevant countermeasures against leaks is to find and repair of leak points of the pipes. Leak noise is a good source to identify the location of leak points of the pipelines. Although there have been several methods to detect the leak location with leak noise, such as listening rods, hydrophones or ground microphones, they have not been so efficient tools. In this paper, acoustic emission (AE) sensors and accelermeters are used to detect leak locations which could provide all easier and move efficient method. Filtering, signal processing and algorithm of raw input data from sensors for the detection of leak location are described. A 120m-long pipeline system for experiment is installed and the results with the system show that the algorithm with the AE sensors and accelerometers offers accurate pinpointing of leaks. Theoretical analysis of sound wave propagation speed of water in underground pipes, which is critically important in leak locating, is also described.

Low-salinity Water and Circulation in Summer around Saemangeum Area in the West Coast of Korea (하계 서해안 새만금 연안역 주변 저염수와 순환)

  • 이상호;최현용;손영태;권효근;김영곤;양재삼;정해진;김종구
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.138-150
    • /
    • 2003
  • In the mid-west coast of Korea where Mankyung and Dongjin rivers discharge fresh water, Saemangeum tidal dyke of 33 km long is under construction to reclaim the very shallow estuary region of 41,000ha. Main source of freshwater in this coastal area is Keum River locating closely north of the dyke. At present, the dyke connected with Gogunsan-Gundo separates this area into three regions; northwestern, southwestern and eastern (Saemangeum) region of the dyke, and the water in Saemangeum region is exchanged through one gap in the northern dyke and two gaps in the southern dyke. We have observed distributions and structures of temperature and salinity to examine the summer circulation related with low-salinity water in this coastal area in 1998 and 1999. In the surface layer off the northern dyke a tongue-like distribution of low-salinity extends 60 km long from Keum River estuary mouth to the northwest, forming plume front bounded by offshore water. In the inner region of Saemangeum dykes salinity distributions show that two river waters are merged together and the low salinity water is deflected toward northern gap of the dyke. In the surface layer off the southern dyke we observed small tongue-like distribution of another low-salinity water extending to the north from Gomso Bay. Based on the analysis of distributions of low-salinity water and frontal structures, we can suggest an anticlockwise circulation of coastal water around the dyke, composed by the estuarine water outgoing from the inner region of the dyke through the northern dyke's gap and the inflow through two gaps of southern dyke from offshore. After completing the dyke construction, this coastal circulation around the dyke will be, however, changed because fresh water discharge of Mankyung and Dongjin rivers will be routed artificially and directly into the area offshore of the southern dyke.

Application of Multispectral Remotely Sensed Imagery for the Characterization of Complex Coastal Wetland Ecosystems of southern India: A Special Emphasis on Comparing Soft and Hard Classification Methods

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan;Sanjeevi , Shanmugam
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.3
    • /
    • pp.189-211
    • /
    • 2005
  • This paper makes an effort to compare the recently evolved soft classification method based on Linear Spectral Mixture Modeling (LSMM) with the traditional hard classification methods based on Iterative Self-Organizing Data Analysis (ISODATA) and Maximum Likelihood Classification (MLC) algorithms in order to achieve appropriate results for mapping, monitoring and preserving valuable coastal wetland ecosystems of southern India using Indian Remote Sensing Satellite (IRS) 1C/1D LISS-III and Landsat-5 Thematic Mapper image data. ISODATA and MLC methods were attempted on these satellite image data to produce maps of 5, 10, 15 and 20 wetland classes for each of three contrast coastal wetland sites, Pitchavaram, Vedaranniyam and Rameswaram. The accuracy of the derived classes was assessed with the simplest descriptive statistic technique called overall accuracy and a discrete multivariate technique called KAPPA accuracy. ISODATA classification resulted in maps with poor accuracy compared to MLC classification that produced maps with improved accuracy. However, there was a systematic decrease in overall accuracy and KAPPA accuracy, when more number of classes was derived from IRS-1C/1D and Landsat-5 TM imagery by ISODATA and MLC. There were two principal factors for the decreased classification accuracy, namely spectral overlapping/confusion and inadequate spatial resolution of the sensors. Compared to the former, the limited instantaneous field of view (IFOV) of these sensors caused occurrence of number of mixture pixels (mixels) in the image and its effect on the classification process was a major problem to deriving accurate wetland cover types, in spite of the increasing spatial resolution of new generation Earth Observation Sensors (EOS). In order to improve the classification accuracy, a soft classification method based on Linear Spectral Mixture Modeling (LSMM) was described to calculate the spectral mixture and classify IRS-1C/1D LISS-III and Landsat-5 TM Imagery. This method considered number of reflectance end-members that form the scene spectra, followed by the determination of their nature and finally the decomposition of the spectra into their endmembers. To evaluate the LSMM areal estimates, resulted fractional end-members were compared with normalized difference vegetation index (NDVI), ground truth data, as well as those estimates derived from the traditional hard classifier (MLC). The findings revealed that NDVI values and vegetation fractions were positively correlated ($r^2$= 0.96, 0.95 and 0.92 for Rameswaram, Vedaranniyam and Pitchavaram respectively) and NDVI and soil fraction values were negatively correlated ($r^2$ =0.53, 0.39 and 0.13), indicating the reliability of the sub-pixel classification. Comparing with ground truth data, the precision of LSMM for deriving moisture fraction was 92% and 96% for soil fraction. The LSMM in general would seem well suited to locating small wetland habitats which occurred as sub-pixel inclusions, and to representing continuous gradations between different habitat types.