• 제목/요약/키워드: localized modeling

검색결과 85건 처리시간 0.027초

콘크리트 변형률국소화영역의 유한요소모델링 (Finite Element Modeling of Strain Localization Zone in Concrete)

  • 송하원;나웅진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.53-60
    • /
    • 1997
  • The strain localization of concrete is a phenomenon such that the deformation of concrete is localized in finite region along with softening behavior. The objective of this paper is to develope a consistent algorithm for the finite element modeling of localized zone in the analysis of the strain-localization in concrete. For modeling of the localized zone in concrete under strain localization, a general Drucker-Prager failure criterion which can consider nonlinear strain softening behavior of concrete after peak-stress is introduce. The return-mapping algorithm is used for the integration of the elasto-plastic rate equation and the consistent tangent modulus is derived. Using finite element program implemented with the developed algorithms, strain localization behaviors for the different sizes of concrete specimen under compression are simulated.

  • PDF

콘크리트에서 국소화된 파괴해석을 위한 유한요소법 (A Finite Element Method for Localized Failure Analysis of Concrete)

  • 송하원;김형운;우승민
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.233-238
    • /
    • 1999
  • Localized failure analysis of concrete structures can be carried out effectively by modeling fracture process zone of concrete during crack initiation and propagation. But, the analysis techniques are still insufficient for crack modeling because of difficulties in numerical analysis procedure which describe progressive crack. In this paper, a finite element with embedded displacement discontinuity is introduced to remove the difficulties of remeshing for crack propagation in discrete crack model during progressive failure analysis of concrete structures. The performance of this so-called embedded crack approach for concrete failure analysis is verified by several analysis examples. The analysis results show that the embedded crack approach retains mesh size objectivity and can simulate localized failure under mixed mode loading. It can be concluded that the embedded crack approach cab be an effective alternate to the smeared and discrete crack approaches.

  • PDF

손상과 소성을 고려한 콘크리트 변형률 국소화의 유한요소해석 (Finite Element Analysis of Strain Localization in Concrete Considering Damage and Plasticity)

  • 송하원;나웅진
    • 전산구조공학
    • /
    • 제10권3호
    • /
    • pp.241-250
    • /
    • 1997
  • 콘크리트에 발생하는 변형률 국소화는 연화거동에 수반하여 변형이 국부적으로 집중되는 현상으로 이를 유한요소해석 할 수 있는 일관된 알고리즘을 개발하는 것이 본 연구의 목적이다. 변형률 국소화현상이 발생한 콘크리트는 변형률이 집중되는 국소화영역과 그외의 영역인 비국소화영역으로 크게 구분할 수 있으며 국소화영역에서는 연화현상을 포함하는 탄소성거동을 하게 되며 비국소화영역은 손상제하거동을 수반하게 된다. 변형률 국소화현상이 진행중인 콘크리트의 국소화영역을 모델링하기 위하여 열역학적으로 정식화된 전형적인 소성모델에 콘크리트의 극한응력 이후에 비선형 연화로 표현되는 소성거동을 고려할 수 있는 일반화된 Drucker-Prager모델을 도입하였으며 소성이론식의 적분을 위해 return-mapping 알고리즘을 사용하고 일관된 알고리즘을 전개하였다. 또한, 콘크리트의 비국소화영역의 모델링을 위하여 열역학적 자유에너지함수를 수정하여 비선형 탄성 및 손상의 일관된 알고리즘을 전개하였다. 개발된 알고리즘에 의한 유한요소해석을 통해 압축을 받는 콘크리트 부재의 변형률 국소화 현상을 해석하였다.

  • PDF

Evolution of post-peak localized strain field of steel under quasi-static uniaxial tension: Analytical study

  • Altai, Saif L.;Orton, Sarah L.;Chen, Zhen
    • Structural Engineering and Mechanics
    • /
    • 제83권4호
    • /
    • pp.435-449
    • /
    • 2022
  • Constitutive modeling that could reasonably predict and effectively evaluate the post-peak structural behavior while eliminating the mesh-dependency in numerical simulation remains to be developed for general engineering applications. Based on the previous work, a simple one-dimensional modeling procedure is proposed to predict and evaluate the post-peak response, as characterized by the evolution of localized strain field, of a steel member to monotonically uniaxial tension. The proposed model extends the classic one-dimensional softening with localization model as introduced by (Schreyer and Chen 1986) to account for the localization length, and bifurcation and rupture points. The new findings of this research are as follows. Two types of strain-softening functions (bilinear and nonlinear) are proposed for comparison. The new failure criterion corresponding to the constitutive modeling is formulated based on the engineering strain inside the localization zone at rupture. Furthermore, a new mathematical expression is developed, based on the strain rate inside and outside the localization zone, to describe the displacement field at which bifurcation occurs. The model solutions are compared with the experimental data on four low-carbon cylindrical steel bars of different lengths. For engineering applications, the model solutions are also compared to the experimental data of a cylindrical steel bar system (three steel bars arranged in series). It is shown that the bilinear and nonlinear softening models can predict the energy dissipation in the post-peak regime with an average difference of only 4%.

적응형 세분화를 이용한 3D 메쉬의 기하데이타 압축 (Adaptive Subdivision for Geometry Coding of 3D Meshes)

  • 이혜영
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제33권8호
    • /
    • pp.547-553
    • /
    • 2006
  • 본 논문에서는 3 차원 메쉬의 기하데이타 압축을 위한 새로운 알고리즘을 소개하고자 한다. 광역좌표계에 의거한 기하데이타 압축방법은 구현이 쉽고 단순하게 양자화가 결정되지만 압축효율은 지역 화표계를 이용한 방법보다 떨어지는 단점이 있다. 반면에 지역좌표계에 기초한 방법은 광역좌표계 방법보다 압축효율은 우수하나 양자화가 사용자의 시행착오에 전적으로 의존하므로, 비체계적이고 시간이 많이 소요되는 단점이 있다. 본 논문에서는 지역좌표계영역에 적용형 세분화를 도입하여 체계적인 양자화가 가능하도록 하였다. 또한 문맥 모델링기법을 적용하여 연결데이타 압축효율도 더욱 향상시켰다. 결과적으로, 본 논문의 새로운 압축 알고리즘은 압축 효율성을 유지하면서, 동시에 체계적이고 직관적인 방법으로 왜곡율과압축률간의 균형을 제어할 수 있도록 하여 알고리즘의 신뢰성을 높였다.

ED-FEM multi-scale computation procedure for localized failure

  • Rukavina, Ivan;Ibrahimbegovic, Adnan;Do, Xuan Nam;Markovic, Damijan
    • Coupled systems mechanics
    • /
    • 제8권2호
    • /
    • pp.111-127
    • /
    • 2019
  • In this paper, we present a 2D multi-scale coupling computation procedure for localized failure. When modeling the behavior of a structure by a multi-scale method, the macro-scale is used to describe the homogenized response of the structure, and the micro-scale to describe the details of the behavior on the smaller scale of the material where some inelastic mechanisms, like damage or plasticity, can be defined. The micro-scale mesh is defined for each multi-scale element in a way to fit entirely inside it. The two scales are coupled by imposing the constraint on the displacement field over their interface. An embedded discontinuity is implemented in the macro-scale element to capture the softening behavior happening on the micro-scale. The computation is performed using the operator split solution procedure on both scales.

Rate of softening and sensitivity for weakly cemented sensitive clays

  • Park, DongSoon
    • Geomechanics and Engineering
    • /
    • 제10권6호
    • /
    • pp.827-836
    • /
    • 2016
  • The rate of softening is an important factor to determine whether the failure occurs along localized shear band or in a more diffused manner. In this paper, strength loss and softening rate effect depending on sensitivity are investigated for weakly cemented clays, for both artificially cemented high plasticity San Francisco Bay Mud and low plasticity Yolo Loam. Destructuration and softening behavior for weakly cemented sensitive clays are demonstrated and discussed through multiple vane shear tests. Artificial sensitive clays are prepared in the laboratory for physical modeling or constitutive modeling using a small amount of cement (2 to 5%) with controlled initial water content and curing period. Through test results, shear band thickness is theoretically computed and the rate of softening is represented as a newly introduced parameter, ${\omega}_{80%}$. Consequently, it is found that the softening rate increases with sensitivity for weakly cemented sensitive clays. Increased softening rate represents faster strength loss to residual state and faster minimizing of shear band thickness. Uncemented clay has very low softening rate to 80% strength drop. Also, it is found that higher brittleness index ($I_b$) relatively shows faster softening rate. The result would be beneficial to study of physical modeling for sensitive clays in that artificially constructed high sensitivity (up to $S_t=23$) clay exhibits faster strain softening, which results in localized shear band failure once it is remolded.

콘크리트 변형률국소화 모형 및 해석 (Modeling and Analysis of Strain Localization in Concrete)

  • 송하원;김인순;나웅진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.375-382
    • /
    • 1997
  • In this paper, a unified micromechanics-based model which can be applied to both tensile and compressive member of concrete is suggested and to the analysis of the strain-localization in concrete. From the comparison of the analysis results obtained from different size of concrete members with experimental data, it id shown that the model in this paper can be applied to the analysis of the strain localization concrete. For the finite element analysis of the strain-localization in concrete, the localized zone in concrete under strain localization is modeled as ad plastic model which can consider nonlinear strain softening and the non-localized zone is modeled as a nonlinear elastic-damage model. Using developed finite element analysis program. strain localization behaviors under compressive force for the different sizes of concrete having different sizes of the localized zone are simulated.

  • PDF

Development of a Heated Vapor Inhalator Using LQG/LTR

  • Jaehoon Rhee;Kwangseok Chae;Changwan Jeon;Park, Joonsoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.60.3-60
    • /
    • 2002
  • 1. Introduction 2. The Localized Aerosol Hyperthermia 3. Hardware Development of a Heated Vapor Inhalator 4. Modeling of the Control System 5. The Design of LQG/LTR Controller 6. Conclusion

  • PDF

콘크리트의 안정-불안정 거동에 관한 연구 (A Study on Stable-Unstable Behavior in Concrete)

  • 송하원;전재홍;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.459-465
    • /
    • 1996
  • This paper is about unstable behavior in concrete during the localized deformation and the crack growths in concrete. By modeling the strain localization phenomenon of concrete, the stability condition of the localization is obtained and analyzed. And the stability and bifurcation condition of crack growths in two parallel cracks under different loading conditions are derived and discussed.

  • PDF