DOI QR코드

DOI QR Code

ED-FEM multi-scale computation procedure for localized failure

  • Rukavina, Ivan (Universite de Technologie de Compiegne / Sorbonne Universites, Laboratoire Roberval, Centre de Recherche Royallieu) ;
  • Ibrahimbegovic, Adnan (Universite de Technologie de Compiegne / Sorbonne Universites, Laboratoire Roberval, Centre de Recherche Royallieu) ;
  • Do, Xuan Nam (Universite de Technologie de Compiegne / Sorbonne Universites, Laboratoire Roberval, Centre de Recherche Royallieu) ;
  • Markovic, Damijan (EDF, DIPNN / Direction Technique)
  • Received : 2019.02.23
  • Accepted : 2019.03.21
  • Published : 2019.04.25

Abstract

In this paper, we present a 2D multi-scale coupling computation procedure for localized failure. When modeling the behavior of a structure by a multi-scale method, the macro-scale is used to describe the homogenized response of the structure, and the micro-scale to describe the details of the behavior on the smaller scale of the material where some inelastic mechanisms, like damage or plasticity, can be defined. The micro-scale mesh is defined for each multi-scale element in a way to fit entirely inside it. The two scales are coupled by imposing the constraint on the displacement field over their interface. An embedded discontinuity is implemented in the macro-scale element to capture the softening behavior happening on the micro-scale. The computation is performed using the operator split solution procedure on both scales.

Keywords

References

  1. Do, X.N., Ibrahimbegovic, A. and Brancherie, D. (2015), "Combined hardening and localized failure with softening plasticity in dynamics", Coupled Syst. Mech., 4(2), 669-690.
  2. Do, X.N., Ibrahimbegovic, A. and Brancherie, D. (2017), "Dynamics framework for 2D anisotropic continuum- discrete damage model for progressive localized failure of massive structures", Comput. Struct., 183, 14-26. https://doi.org/10.1016/j.compstruc.2017.01.011
  3. Do, X.N. and Ibrahimbegovic, A. (2018), "2D continuum viscodamage-embedded discontinuity model with second order mid-point scheme", Coupled Syst. Mech., 7(6), 669-690. https://doi.org/10.12989/csm.2018.7.6.669
  4. Feyel, F. and Chaboche, J.L. (2000), "FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials", Comput. Meth. Appl. Mech. Eng., 183(3-4), 309-330. https://doi.org/10.1016/S0045-7825(99)00224-8
  5. Geers, M.G.D., Kouznetsova, V.G. and Brekelmans, W.A.M. (2010), "Multi-scale computational homogenization: Trends and challenges", J. Comput. Appl. Math., 234(7), 2175-2182. https://doi.org/10.1016/j.cam.2009.08.077
  6. Hautefeuille, M., Colliat, J.B., Ibrahimbegovic, A., Matthies, H.G. and Villon, P. (2012), "A multi-scale approach to model localized failure with softening", Comput. Struct., 94, 83-95. https://doi.org/10.1016/j.compstruc.2011.11.007
  7. Ibrahimbegovic, A. and Markovic, D. (2003), "Strong coupling methods in multi-phase and multi-scale modeling of inelastic behavior of heterogeneous structures", Comput. Meth. Appl. Mech. Eng., 192(28-30), 3089-3107. https://doi.org/10.1016/S0045-7825(03)00342-6
  8. Ibrahimbegovic, A. and Brancherie, D. (2003), "Combined hardening and softening constitutive model of plasticity: Precursor to shear slip line failure", Comput. Mech., 31(1-2), 88-100. https://doi.org/10.1007/s00466-002-0396-x
  9. Ibrahimbegovic, A. (2009), Nonlinear Solid Mechanics, Theoretical Formulations and Finite Element Solution Methods, Springer.
  10. Ibrahimbegovic, A., Kassiotis, C. and Niekamp, R. (2016), "Fluid-structure interaction problems solution by operator split methods and efficient software development by code-coupling", Coupled Syst. Mech., 5(2), 145-156. https://doi.org/10.12989/csm.2016.5.2.145
  11. Niekamp, R., Markovic, D., Ibrahimbegovic, A., Matthies, H.G. and Taylor, R.L. (2009), "Multi-scale modelling of heterogeneous structures with inelastic constitutive behavior, part II-software coupling implementation aspects", Int. J. Comput.-Aid. Eng. Softw., 26(1-2), 6-28. https://doi.org/10.1108/02644400910924780
  12. Niekamp, R., Ibrahimbegovic, A. and Matthies, H.G. (2014), "Formulation, solution and CTL software for coupled thermomechanics systems", Coupled Syst. Mech., 3(1), 1-25. https://doi.org/10.12989/csm.2014.3.1.001
  13. Park, K.C., Felippa, C.A. and Rebel, G. (2002), "A simple algorithm for localized construction of nonmatching structural interfaces", Int. J. Numer. Meth. Eng., 53(9), 2117-2142. https://doi.org/10.1002/nme.374
  14. Sarfaraz, S.M., Rosic, B.V., Matthies, H.M. and Ibrahimbegovic, A. (2018), "Stochastic upscaling via linear Bayesian updating", Coupled Syst. Mech., 7(2), 211-232. https://doi.org/10.12989/CSM.2018.7.2.211
  15. Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. (2013), The Finite Element Method: Its Basis and Fundamentals, Elsevier.

Cited by

  1. Stiffness of hybrid systems with and without pre-stressing vol.9, pp.2, 2020, https://doi.org/10.12989/csm.2020.9.2.147
  2. Ultrasonic waves in a single walled armchair carbon nanotube resting on nonlinear foundation subjected to thermal and in plane magnetic fields vol.10, pp.1, 2021, https://doi.org/10.12989/csm.2021.10.1.039