• Title/Summary/Keyword: localization recognition system

Search Result 93, Processing Time 0.024 seconds

Development of Speech Recognition System based on User Context Information in Smart Home Environment (스마트 홈 환경에서 사용자 상황정보 기반의 음성 인식 시스템 개발)

  • Kim, Jong-Hun;Sim, Jae-Ho;Song, Chang-Woo;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.328-338
    • /
    • 2008
  • Most speech recognition systems that have a large capacity and high recognition rates are isolated word speech recognition systems. In order to extend the scope of recognition, it is necessary to increase the number of words that are to be searched. However, it shows a problem that exhibits a decrease in the system performance according to the increase in the number of words. This paper defines the context information that affects speech recognition in a ubiquitous environment to solve such a problem and develops user localization method using inertial sensor and RFID. Also, we develop a new speech recognition system that demonstrates better performances than the existing system by establishing a word model domain of a speech recognition system by context information. This system shows operation without decrease of recognition rate in smart home environment.

Mapping algorithm for Error Compensation of Indoor Localization System (실내 측위 시스템의 오차 보정을 위한 매핑 알고리즘)

  • Kim, Tae-Kyum;Cho, We-Duke
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.4
    • /
    • pp.109-117
    • /
    • 2010
  • With the advent of new technologies such as HSDPA, WiBro(Wireless Broadband) and personal devices, we can access various contents and services anytime and anywhere. A location based service(LBS) is essential for providing personalized services with individual location information in ubiquitous computing environment. In this paper, we propose mapping algorithm for error compensation of indoor localization system. Also we explain filter and indoor localization system. we have developed mapping algorithms composed of a map recognition method and a position compensation method. The map recognition method achieves physical space recognition and map element relation extraction. We improved the accuracy of position searching. In addition, we reduced position errors using a dynamic scale factor.

Visual Positioning System based on Voxel Labeling using Object Simultaneous Localization And Mapping

  • Jung, Tae-Won;Kim, In-Seon;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.302-306
    • /
    • 2021
  • Indoor localization is one of the basic elements of Location-Based Service, such as indoor navigation, location-based precision marketing, spatial recognition of robotics, augmented reality, and mixed reality. We propose a Voxel Labeling-based visual positioning system using object simultaneous localization and mapping (SLAM). Our method is a method of determining a location through single image 3D cuboid object detection and object SLAM for indoor navigation, then mapping to create an indoor map, addressing it with voxels, and matching with a defined space. First, high-quality cuboids are created from sampling 2D bounding boxes and vanishing points for single image object detection. And after jointly optimizing the poses of cameras, objects, and points, it is a Visual Positioning System (VPS) through matching with the pose information of the object in the voxel database. Our method provided the spatial information needed to the user with improved location accuracy and direction estimation.

Implementation of Indoor Localization System

  • Ryu, Dong-Wan;Kim, Sun-Hyung;Jeong, Dong-Gyu
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.54-60
    • /
    • 2019
  • In this paper, a localization system for indoor objects is proposed. The proposed system consists of Beacons, LED Cells, Main Cell Controller (MCC), and Display. A Beacon is attached at each indoor object, and each LED cell has Beacon Scanner and VLC Transmitter. The Visual Light Communications (VLC) and Power Line Communications (PLC) methods are used to communicate the signals for localization of indoor objects. And the proposed system is designed, and implemented as a prototype. To certify that our propose d system can exactly localize a given indoor object, we take test for the implemented system as a p rototype. Here the location of the given indoor object is known. Test is done in two ways. The first is to check the operation of the detail of the system, and the second is the position recognition of i ndoor object. The second is the test of the implemented system to correctly detect the location of the indoor object with Beacon, while the object with Beacon is moved from location C to A. The experimental result shows that the system is exactly detect the moving locations. The system has the advantages of using previously installed power lines, and it does not need to use LAN lines or optical cables. The proposed system is usefully applied to indoor object localization area.

Active Audition System based on 2-Dimensional Microphone Array (2차원 마이크로폰 배열에 의한 능동 청각 시스템)

  • Lee, Chang-Hun;Kim, Yong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.175-178
    • /
    • 2003
  • This paper describes a active audition system for robot-human interface in real environment. We propose a strategy for a robust sound localization and for -talking speech recognition(60-300cm) based on 2-dimensional microphone array. We consider spatial features, the relation of position and interaural time differences, and realize speaker tracking system using fuzzy inference profess based on inference rules generated by its spatial features.

  • PDF

Mobile Robot Localization using Ceiling Landmark Positions and Edge Pixel Movement Vectors (천정부착 랜드마크 위치와 에지 화소의 이동벡터 정보에 의한 이동로봇 위치 인식)

  • Chen, Hong-Xin;Adhikari, Shyam Prasad;Kim, Sung-Woo;Kim, Hyong-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.368-373
    • /
    • 2010
  • A new indoor mobile robot localization method is presented. Robot recognizes well designed single color landmarks on the ceiling by vision system, as reference to compute its precise position. The proposed likelihood prediction based method enables the robot to estimate its position based only on the orientation of landmark.The use of single color landmarks helps to reduce the complexity of the landmark structure and makes it easily detectable. Edge based optical flow is further used to compensate for some landmark recognition error. This technique is applicable for navigation in an unlimited sized indoor space. Prediction scheme and localization algorithm are proposed, and edge based optical flow and data fusing are presented. Experimental results show that the proposed method provides accurate estimation of the robot position with a localization error within a range of 5 cm and directional error less than 4 degrees.

Development of Localization using Artificial and Natural Landmark for Indoor Mobile Robots (실내 이동 로봇을 위한 자연 표식과 인공 표식을 혼합한 위치 추정 기법 개발)

  • Ahn, Joonwoo;Shin, Seho;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.205-216
    • /
    • 2016
  • The localization of the robot is one of the most important factors of navigating mobile robots. The use of featured information of landmarks is one approach to estimate the location of the robot. This approach can be classified into two categories: the natural-landmark-based and artificial-landmark-based approach. Natural landmarks are suitable for any environment, but they may not be sufficient for localization in the less featured or dynamic environment. On the other hand, artificial landmarks may generate shaded areas due to space constraints. In order to improve these disadvantages, this paper presents a novel development of the localization system by using artificial and natural-landmarks-based approach on a topological map. The proposed localization system can recognize far or near landmarks without any distortion by using landmark tracking system based on top-view image transform. The camera is rotated by distance of landmark. The experiment shows a result of performing position recognition without shading section by applying the proposed system with a small number of artificial landmarks in the mobile robot.

A Study on the Implementation of RFID-based Autonomous Navigation System for Robotic Cellular Phone(RCP)

  • Choe, Jae-Il;Choi, Jung-Wook;Oh, Dong-Ik;Kim, Seung-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.457-462
    • /
    • 2005
  • Industrial and economical importance of CP(Cellular Phone) is growing rapidly. Combined with IT technology, CP is currently one of the most attractive technologies for all. However, unless we find a breakthrough to the technology, its growth may slow down soon. RT(Robot Technology) is considered one of the most promising next generation technology. Unlike the industrial robot of the past, today's robots require advanced technologies, such as soft computing, human-friendly interface, interaction technique, speech recognition, object recognition, and many others. In this study, we present a new technological concept named RCP(Robotic Cellular Phone), which combines RT & CP, in the vision of opening a new direction to the advance of CP, IT, and RT all together. RCP consists of 3 sub-modules. They are $RCP^{Mobility}$, $RCP^{Interaction}$, and $RCP^{Interaction}$. $RCP^{Mobility}$ is the main focus of this paper. It is an autonomous navigation system that combines RT mobility with CP. Through $RCP^{Mobility}$, we should be able to provide CP with robotic functionalities such as auto-charging and real-world robotic entertainments. Eventually, CP may become a robotic pet to the human being. $RCP^{Mobility}$ consists of various controllers. Two of the main controllers are trajectory controller and self-localization controller. While Trajectory Controller is responsible for the wheel-based navigation of RCP, Self-Localization Controller provides localization information of the moving RCP. With the coordinate information acquired from RFID-based self-localization controller, Trajectory Controller refines RCP's movement to achieve better RCP navigations. In this paper, a prototype system we developed for $RCP^{Mobility}$ is presented. We describe overall structure of the system and provide experimental results of the RCP navigation.

  • PDF

A Vehicular License Plate Recognition Framework For Skewed Images

  • Arafat, M.Y.;Khairuddin, A.S.M.;Paramesran, R.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5522-5540
    • /
    • 2018
  • Vehicular license plate (LP) recognition system has risen as a significant field of research recently because various explorations are currently being conducted by the researchers to cope with the challenges of LPs which include different illumination and angular situations. This research focused on restricted conditions such as using image of only one vehicle, stationary background, no angular adjustment of the skewed images. A real time vehicular LP recognition scheme is proposed for the skewed images for detection, segmentation and recognition of LP. In this research, a polar co-ordinate transformation procedure is implemented to adjust the skewed vehicular images. Besides that, window scanning procedure is utilized for the candidate localization that is based on the texture characteristics of the image. Then, connected component analysis (CCA) is implemented to the binary image for character segmentation where the pixels get connected in an eight-point neighbourhood process. Finally, optical character recognition is implemented for the recognition of the characters. For measuring the performance of this experiment, 300 skewed images of different illumination conditions with various tilt angles have been tested. The results show that proposed method able to achieve accuracy of 96.3% in localizing, 95.4% in segmenting and 94.2% in recognizing the LPs with an average localization time of 0.52s.

Video Palmprint Recognition System Based on Modified Double-line-single-point Assisted Placement

  • Wu, Tengfei;Leng, Lu
    • Journal of Multimedia Information System
    • /
    • v.8 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • Palmprint has become a popular biometric modality; however, palmprint recognition has not been conducted in video media. Video palmprint recognition (VPR) has some advantages that are absent in image palmprint recognition. In VPR, the registration and recognition can be automatically implemented without users' manual manipulation. A good-quality image can be selected from the video frames or generated from the fusion of multiple video frames. VPR in contactless mode overcomes several problems caused by contact mode; however, contactless mode, especially mobile mode, encounters with several revere challenges. Double-line-single-point (DLSP) assisted placement technique can overcome the challenges as well as effectively reduce the localization error and computation complexity. This paper modifies DLSP technique to reduce the invalid area in the frames. In addition, the valid frames, in which users place their hands correctly, are selected according to finger gap judgement, and then some key frames, which have good quality, are selected from the valid frames as the gallery samples that are matched with the query samples for authentication decision. The VPR algorithm is conducted on the system designed and developed on mobile device.