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Mobile Robot Localization using Ceiling Landmark Positions
and Edge Pixel Movement Vectors
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(Hongxin Chen, Shyam Prasad Adhikari, Sungwoo Kim, and Hyongsuk Kim)

Abstract: A new indoor mobile robot localization method is presented. Robot recognizes well designed single color landmarks on
the ceiling by vision system, as reference to compute its precise position. The proposed likelihood prediction based method enables
the robot to estimate its position based only on the orientation of landmark.The use of single color landmarks helps to reduce the
complexity of the landmark structure and makes it easily detectable. Edge based optical flow is further used to compensate for some
landmark recognition error. This technique is applicable for navigation in an unlimited sized indoor space. Prediction scheme and
localization algorithm are proposed, and edge based optical flow and data fusing are presented. Experimental results show that the
proposed method provides accurate estimation of the robot position with a localization error within a range of 5 cm and directional

error less than 4 degrees.
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L. INTRODUCTION

High accuracy localization is a very important function to
support mobile robot to complete a complex task in a known or
unknown environment. Generally, most wheeled mobile robots
used the dead reckoning method with lower complexity, but error
accumulation was its drawback which was difficult to overcome
and caused wheel slippage problem [1]. Ultrasonic sensors were
widely used to overcome this problem [2-4]. Extended Kalman
filtering with environment models [3-6], fuzzy fusion logic [7], or
neural networks [8] were further used to improve the accuracy. But
the efficiency relied on the amount of a priori knowledge about the
environment, which resulted in complexity in system
implementation and practical use.

More recently, visual landmarks are used. Camera recognizes the
feature of natural or artificial landmarks to calculate the robot
position. Ceiling lights as natural landmarks to navigate are used in
[9] and 64 different landmarks, each with a unique feature, were
designed in [10]. Through identifying different landmark, a mobile
robot calculates its real position. But if the indoor space is very
large, 64 different landmarks will be insufficient.

Another landmark based technology used RFID (Radio
Frequency Identification). RFID readers read reference position
information from the special distributed RFID tags [11-13], but the
implementation cost is much higher.

Special coded color patches on the ceiling, named “cell-coded”,
which could be repeatedly used for an infinite area is proposed in
[14]. But the path structure is still a little complex. In order to
simplify the structure of patch, a likelihood prediction based
method is presented in this paper, which also uses color patches as
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landmarks. Patch images are acquired by a camera facing the
ceiling, mounted on the mobile robot. Based on image analysis, the
robot can recognize the patches and estimates its position. In order
to compensate for some landmark recognition error, edge based
optical flow is used and resultant data is fused with landmark based
data in real-time. Experimental results show that this system has
high accuracy.

II. LIKELTHOOD LANDMARK PREDICTION
BASED LOCALIZATION

In a conventional vision based localization system, color patches
as landmarks are arranged in a fixed pattern on the ceiling, as
shown in Fig. 1, each dot representing a patch as a landmark. Each
patch containing different information (ID and orientation)
represents an absolute coordinate and the robot determines its
position by identifying the nearest patch’s information. However,
patches with different IDs must have different features, such as
different colors or different geometrical shapes. When more
distinguishable IDs are needed, features used for patches become
more complicated.

The "cell-coded" method [14], greatly simplifies the structure of
patch, but still at least 3 colors should be used to create 9 different
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Fig. 1. Vision landmark based localization system.
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IDs. To further simplify the structure, likelihood prediction based
localization is proposed, which uses single color only.
1. Prediction scheme

As the robot moves continuously, its trace is a continuous curve.
So if the observer captures the robot continuously, the observed
positions of robot at two consecutive time instants #/ and ¢ are
close enough (distance ~ 0). Similarly, the position in image
center, observed by camera on the robot, is also continuous.
Considering that the processing time is not zero in practice, these
positions observed by camera are a series of discrete points on the
trace. But if the image processing speed is high enough, or the
robot moving speed is not high, every two neighboring points are
still very close. Based on this idea, we can predict every captured
patch’s position and further compute robot’s position.

Patches are distributed in a grid as shown in Fig. 1 and the
distance between each neighboring patches is d. Each patch
contains direction information only. At any time instant, the relative
position of robot and landmark can be easily estimated. Assume
Fig. 2 shows one possible patch location in current image. “x-)” is
the real coordinate system and “x-y' ”
system. Since our patch contains its orientation information,
patch’s orientation in the image can be easily calculated as the
angle 6,, the direction of the patch relative to the image center is

is the image coordinate

6,, and the real distance from the image center to the patch center

can be calculated as L. Then the robot’s current position and
orientation can be expressed by the following equation.

C,y)=(X, +Loos(d, -6, —/2),Y, + Lsin(@, — 6, —7/2))

{9, —7/2+6, o

where, (x,y) and 6. represent robot’s current position and
-y . tep po

orientation respectively.

Suppose at time #,_;, robot’s position is R;; and its captured patch
is Ps as shown in Fig. 3(b) where all solid circles represent patches
and stars represent the robot. At time ¢, the relative position of
robot and captured patch is as indicated in Fig. 3(a). As the patch
contains direction information, we can compute their relative
position based on equation (1). As long as image processing speed
is high enough, current captured patch at time #, must be one of the
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Fig. 2. Possible patch location in the image.
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Fig. 3. Patch position prediction.

9 neighboring patches surrounding patch Ps (including itself), that
is one of patch P ..., Ps.

It implies that there are 9 candidate patches and one of them
could be the current captured patch. And according to Fig. 3(a), as
the robot’s position relative to current patch is known, there are
also 9 candidate positions R;..,R9 of the robot currently. Our
scheme is to select the most likely one. As explained earlier, robot’s
most likely current position is R, the one closest to that at time ¢,
(position R, ;), and the most likely patch is Ps.

2. Localization algorithm

Let (Xi.1,Yiy) and (X, 1) indicate captured patches’ position at

time #;; and . Then (X;,Y;) must be one of

{(Xi"Yi)KXi’Yi) =X, +kd,Y_ +k2d)’} )

k,,k, €{-1,0,1}

which has 9 candidate coordinates. If (x;,,;) indicate 9 candidate
coordinates of robot at time #; then from equation (1) and (2), the
likely robot position can be calculated as equation (3).

(0,3 (X3, T YL - (cO5(B, -8, -m/2),5in(8,-0,-w2))  (3)

So the most likely position (x,3;) of the robot at time i can be
computed from equation (4)

(x:21) = min| (e ) = G 21| @

Substituting equation (2) and (3) into (4), we get
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Fig. 4. Flow diagram of Likelihood Prediction based localization
algorithm.

(X +kd, Y, +kyd)+
(x,-,y,-) = min |L '(Sin(ez —6,),—cos(9, _el)) n )
K dy e{=L.0.13
(xi-l’yi-l)

Once we obtain the values of & and k; that satisfy equation (5),
(X, 1)) can also be computed and used for consecutive time i+7. So
as long as the initial position is given at the very beginning,
captured patch’s position can be computed based on Fig. 2, and the
robot’s position can be computed at any time. Fig. 4 shows the
flow diagram of proposed algorithm.

III. EDGE BASED OPTICAL FLOW TO COMPUTE
ROBOT’S ROTATING ANGLE AND SHIFTING
VECTOR

1. Edge based optical flow

Although we can design a special patch which is easily
distinguished from the background and helps in the recognition of
the patch’s orientation, errors in patch recognition may occur due
to change in intensity or the blurring of image. This leads to
erroneous robot’s position estimation. We use optical flow to
compensate for the error.

When the robot moves or rotates, the image of the ceiling in the
captured image also moves or rotates inversely. By comparing two
successive image frames, optical flow algorithm can be used to
find the moving vector of the ceiling in the image, whose inverse
will approximate the robot’s moving vector.

Generally, optical flow is based on the derivative of intensity. It
estimates each point’s optical flow based in some neighboring area
so as to minimize the difference of all those point’s optical flow
[16]. But the optical flow at each point in the image is different and
because of the intensity variations, the accuracy of the calculated
optical flow is quite low. In our case, as the camera is always
vertical to the ceiling, all the pixels have same linear and angular
displacement. So, each pixel has the same moving vector, which is
the global moving vector. We overlay the first frame in the second
frame, and an optimal matching is found which minimizes the total
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Fig. 5. Two consecutive frames and their edge images (a-b) two
consecutive frames (c-d) edge images of image (a) and (b).

intensity differences of each pixel. Thus found moving vector will
be the inverse of robot’s moving vector, but the processing time is
high.

In most cases, ceilings are not smooth and may contain some
texture, straight lines, circles or some other objects .The edges of
the ceiling can be extracted and as the edge of same position in
ceiling will not change dramatically, the same position can be
located in two consecutive images. Fig. S shows 2 consecutive
frames and their edge image when the robot is in motion. It can be
observed that, though there are some noises, the edges from the
two images have a strong relationship. We can use the edge pixels
in the first frame to search for a match in the second and this
method will be computationally efficient.

For each captured image [, edge detection is performed and the
corresponding binary edge image EF, is obtained. [f the whole edge
image EI; is matched in the edge image £7;, the time consumption
is same as that using original image, as we have to compute the
differences at every pixel position. Though matching the edge
pixels in the first frame only will lose some pixels for comparison
with the second frame, it is still acceptable as the lost pixels
account for less than 1% of the total edge pixels. The edge pixels of
edge image EI are extracted into a 2 dimensional array E.
Elements in each row of E;indicate coordinates of one edge point.
Fig. 6 shows the structure of array ;. E(j,1) and £(j,2) represent
the x and y coordinates of /" edge point in image Ef,. As the origin
of image EI; is assumed at the top left and the y axis pointing
downwards, the transformed coordinate of the edge points after

X Yy
Xy Yo
X; X

a6 91A e &
Fig. 6. Edge points array.
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rotating the image E7; through angle € and shifting it with vector

V, can be found by

EIWO cosH{wOIVXO
b= [ a '[o zzD'[sineJ+ {o h]+ '[0 VJ
©
where, / is a 2 dimensional array with the same size as £ a
nd each element is assigned value 1, w and 4 are the image
width and height respectively and, ¥, and V) are the x and y

elements of V.
V=(,r) @

As the robots rotation during two consecutive sampling periods

will not be large, the rotating range can be fixed within (6,,6,).

Similarly, the x and y elements of V  can be fixed within VaVar)
and (V},V,5). If EI. is the changed image of EI, and as all edge
a.y

point coordinates are saved in array E, we only need to check
a4y

whether all these coordinate points correspond to edge pixels at the
same locations in image E7;,; or not. If each corresponding point in
image EI., is an edge point whose value is 1, there is no error.
Otherwise, that point does not match. Equation (8) can be used to
evaluate the total matching grade and select the most suitable

rotating angle @ and shifting vector V.
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2. Result of edge based optical flow to estimate robot’s
rotating angle and shifting vector

At any time i+/, we can estimate the rotating angle 6 and

shifting vector ¥ of ceiling in image from equation (8). So the
inverse of & and ¥V is the robot’s rotating angle &' and

shifting vector V',
@,V =(-6,-p-V) (€)

V' is multiplied by a scaling factor p, which specifies the real-
world distance between two adjacent pixels.

Fig. 7 shows the localization result when using edge based
optical flow. Fig. 7(a) shows robot’s orientation when rotating the
robot around the center of camera from 0 degree to 180 degree. Fig.
7(b) shows estimated robot’s position when moving the robot along
a straight line from (0,0) to (Sm ,2.5m). From the result, we see that
the algorithm works effectively but the errors are accumulated.

IV. DATA FUSION

Because of change in image intensity or image blurring, exact
landmarks recognition may not be possible and big error will be
introduced in the localization of the robot. Though edge based
optical flow can work under varied circumstances small error will
be accumulated. Fusing these two kinds of data can help overcome
either of their shortcomings.

Let the estimated robot position by landmark based algorithm
and edge based optical flow at any time instant be (x; ;) and (x,3%)
respectively. If there is no recognition error of [andmark, then these
2 points are close to each other and the position from the landmark
based method (x;y;) is considered as the current robot position. If

4

Estimate robot position (Xi,}’i) based on
landmark position prediction algorithm

v

Estimate robot position (x'i,y'i) based on edge
based optical flow

No

Correct current robot position:
(o 1)=(GL yD
Select the closest landmark to point (x', y')
from neighboring landmarks of (XH, yi_l) as
current captured landmark (X, 1)
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Fig. 8. Flow diagram of data fusing.
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(x,3) and (x;,y;") are not close to each other, then error is assumed
and (x{)) is chosen as the current robot position. From the
neighborhood of previously identified landmark (X;.,, Y:.1), another
landmark closest to the current robot position (x;,y;) is chosen as
the reference landmark (X;, ;). Now using equation (2) and (5) the
next captured landmark position (Xi11,}i;) and robot position
(xi+1,y4+1) can be estimated.

Fig. 8 shows the data fusing algorithm where 7h is a
appropriately selected threshold which measures the proximity of
points (x{,3%) and (x,);). If the points are not close enough, then
equation (10) is used to reselect the current landmark position.

(Xi’Yi): min I(XM+k1d,Y,._1+k2d)—(xi',y;)

ki Jy €(-1,0,13

(10)

V. EXPERIMENT AND RESULT
Fig. 9(a) shows the experimental setup of the robot with camera
facing the ceiling. The robot diameter is 40cm. Fig. 9(b) shows the
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(a) Mobile robot used in the (b) Color patches on the ceiling
experiment
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Fig. 9. Experimental setup.
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color patches on the ceiling, The distance between two adjacent
patches is 1m and the patch size is 3cmx9cm.

100 positions were tested with the robot moving in a straight line
at a velocity of 0.1m/s. Complex trace has not been considered as it
is related to control algorithm. Fig. 10 shows the measurement
error for each sample where we can see that the estimation error is
less than 5 cm and directional error is less than 4°.

VI. CONCLUSION

In this paper we presented a novel system for mobile robot
localization. Simple patches with orientation information only were
created on the ceiling as landmarks and the likelihood prediction
based method used these patches as reference to find the current
position and the moving direction of the robot. Edge based optical
flow is further used to compensate for some landmark recognition
error. Experimental results demonstrate that the proposed system
provides accurate estimation of robot position where the evaluated
localization error is within the range of 5 centimeters while the
directional error is less than 4 degrees. This makes the proposed
system reliable for practical applications.
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