• Title/Summary/Keyword: local target therapy

Search Result 45, Processing Time 0.022 seconds

Surgery Alone and Surgery Plus Postoperative Radiation Therapy for Patients with pT3N0 Non-small Cell Lung Cancer Invading the Chest Wall (흉벽을 침범한 pT3N0 비소세포폐암 환자에서 수술 단독과 수술 후 방사선치료)

  • 박영제;임도훈;김관민;김진국;심영목;안용찬
    • Journal of Chest Surgery
    • /
    • v.37 no.10
    • /
    • pp.845-855
    • /
    • 2004
  • Background: No general consensus has been available regarding the necessity of postoperative radiation therapy (PORT) and its optimal techniques in the patients with chest wall invasion (pT3cw) and node negative (N0) non-small cell lung cancer (NSCLC). We did retrospective analyses on the pT3cwN0 NSCLC patients who received PORT because of presumed inadequate resection margin on surgical findings. And we compared them with the pT3cwN0 NSCLC patients who did not received PORT during the same period. Material and Method: From Aug. of 1994 till June of 2002, 22 pT3cwN0 NSCLC patients received PORT-PORT (+) group- and 16 pT3cwN0 NSCLC patients had no PORT-PORT (-) group. The radiation target volume for PORT (+) group was confined to the tumor bed plus the immediate adjacent tissue only, and no regional lymphatics were included. The prognostic factors for all patients were analyzed and survival rates, failure patterns were compared with two groups. Result: Age, tumor size, depth of chest wall invasion, postoperative mobidities were greater in PORT (-) group than PORT (+) group. In PORT (-) group, four patients who were consulted for PORT did not receive the PORT because of self refusal (3 patients) and delay in the wound repair (1 patient). For all patients, overall survival (OS), disease-free survival (DFS), loco-regional recurrence-free survival (LRFS), and distant metastases-free survival (DMFS) rates at 5 years were 35.3%, 30.3%, 80.9%, 36.3%. In univariate and multivariate analysis, only PORT significantly affect the survival. The 5 year as rates were 43.3% in the PORT (+) group and 25.0% in PORT (-) group (p=0.03). DFS, LRFS, DMFS rates were 36.9%, 84.9%, 43.1 % in PORT (+) group and 18.8%, 79.4%, 21.9% in PORT(-) group respectively. Three patients in PORT (-) group died of intercurrent disease without the evidence of recurrence. Few suffered from acute and late radiation side effects, all of which were RTOG grade 2 or lower. Conclusion: The strategy of adding PORT to surgery to improve the probability not only of local control but also of survival could be justified, considering that local control was the most important component in the successful treatment of pT3cw NSCLC patients, especially when the resection margin was not adequate. Authors were successful in the marked reduction of the incidence as well as the severity of the acute and late side effects of PORT, without taking too high risk of the regional failures by eliminating the regional lymphatics from the radiation target volume.

Analysis of the Radiation Therapy Outcomes and Prognostic Factors of Thymoma (흉선종에 대한 방사선치료 성적 및 예후인자분석)

  • Lee, Seok-Ho;Lee, Kyu-Chan;Choi, Jin-Ho;Lee, Jae-Ik;Sym, Sun-Jin;Cho, Eun-Kyung
    • Radiation Oncology Journal
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Purpose: This retrospective study was performed to evaluate the efficacy of radiation therapy (RT) and to investigate the prognostic factors for thymoma when treated with RT. Materials and Methods: We analyzed 21 patients with thymoma and also received RT from March 2002 to January 2008. The median follow-up time was 37 months (range, 3 to 89 months). The median patient age was 57 years (range, 24 to 77 years) and the gender ratio of males to females was 4:3. Of the 21 patients, complete resections (trans-sternal thymectomy) and R2 resections were performed in 14 and 1 patient, respectively. A biopsy was performed in 6 patients (28.7%). The WHO cell types in the 21 patients were as follows: 1 patient (4.8%) had type A, 10 patients (47.6%) had type B1-3, and 10 patients (47.6%) had type C. Based on Masaoka staging, 10 patients (47.6%) were stage II, 7 patients (33.3%) were stage III, and 4 patients (19.1%) were stage IVa. Three-dimensional RT was adminstered to the tumor volume (planned target volume), including the anterior mediastinum and the residual disease. The total RT dose ranged from 52.0 to 70.2 Gy (median dose, 54 Gy). Consistent with the WHO criteria, the response rate was only analyzed for the 6 patients who received a biopsy only. The prognostic factors analyzed for an estimate of survival included age, gender, tumor size, tumor pathology, Masaoka stage, the possibility of treatment by performing surgery, the presence of myasthenia gravis, and RT dose. Results: The 3-year overall survival rate (OS) and the progression free survival rate (PFS) were 80.7% and 78.2%, respectively. Among the 10 patients with WHO cell type C, 3 of 4 patients (75%) who underwent a complete resection and 3 of 6 patients (50%) who underwent a biopsy survived. Distant metastasis developed in 4 patients (19.1%). The overall response rate in the 6 patients who received biopsy only were as follows: partial remission in 4 patients (66.7%), stable disease in 1 patient (16.6%), and progressive disease in 1 patient (16.6%). Acute RTOG radiation pneumonitis occurred in 1 patient (4.8%), grade 2 occurred in 2 patients (9.5%), grade 3 occurred in 1 patient (4.8%), and grade 4 occurred in 1 patient (4.8%). A univariate analysis revealed that the significant prognostic factors for OS were age (${\geq}60$, 58.3%; <60, 100%; p=0.0194), pathology (WHO cell type A-B3, 100%; C, 58.3%; p=0.0194) and, whether the patient underwent surgery (yes, 93.3%; no, 50%; p=0.0096). Conclusion: For the 15 patients who received surgery, there was no local failure within the radiation field. In patients with WHO cell type C, surgical procedures could have resulted in a more favorable outcome than biopsy alone. We report here our clinical experience in 21 patients with thymoma who were treated by radiation therapy.

Clinical Application of in Vivo Dosimetry System in Radiotherapy of Pelvis (골반부 방사선 치료 환자에서 in vivo 선량측정시스템의 임상적용)

  • Kim, Bo-Kyung;Chie, Eui-Kyu;Huh, Soon-Nyung;Lee, Hyoung-Koo;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.37-49
    • /
    • 2002
  • The accuracy of radiation dose delivery to target volume is one of the most important factors for good local control and less treatment complication. In vivo dosimetry is an essential QA procedure to confirm the radiation dose delivered to the patients. Transmission dose measurement is a useful method of in vivo dosimetry and it's advantages are non-invasiveness, simplicity and no additional efforts needed for dosimetry. In our department, in vivo dosimetry system using measurement of transmission dose was manufactured and algorithms for estimation of transmission dose were developed and tested with phantom in various conditions successfully. This system was applied in clinic to test stability, reproducibility and applicability to daily treatment and the accuracy of the algorithm. Transmission dose measurement was performed over three weeks. To test the reproducibility of this system, X-tay output was measured before daily treatment and then every hour during treatment time in reference condition(field size; $10 cm{\times} 10 cm$, 100 MU). Data of 11 patients whose pelvis were treated more than three times were analyzed. The reproducibility of the dosimetry system was acceptable with variations of measurement during each day and over 3 week period within ${\pm}2.0%$. On anterior- posterior and posterior fields, mean errors were between -5.20% and +2.20% without bone correction and between -0.62% and +3.32% with bone correction. On right and left lateral fields, mean errors were between -10.80% and +3.46% without bone correction and between -0.55% and +3.50% with bone correction. As the results, we could confirm the reproducibility and stability of our dosimetry system and its applicability in daily radiation treatment. We could also find that inhomogeneity correction for bone is essential and the estimated transmission doses are relatively accurate.

Radiation Dose-escalation Trial for Glioblastomas with 3D-conformal Radiotherapy (3차원 입체조형치료에 의한 아교모세포종의 방사선 선량증가 연구)

  • Cho, Jae-Ho;Lee, Chang-Geol;Kim, Kyoung-Ju;Bak, Jin-Ho;Lee, Se-Byeoung;Cho, Sam-Ju;Shim, Su-Jung;Yoon, Dok-Hyun;Chang, Jong-Hee;Kim, Tae-Gon;Kim, Dong-Suk;Suh, Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.22 no.4
    • /
    • pp.237-246
    • /
    • 2004
  • Purpose: To investigate the effects of radiation dose-escalation on the treatment outcome, complications and the other prognostic variables for glioblastoma patients treated with 3D-conformal radiotherapy (3D-CRT). Materials and Methods: Between Jan 1997 and July 2002, a total of 75 patients with histologically proven diagnosis of glioblastoma were analyzed. The patients who had a Karnofsky Performance Score (KPS) of 60 or higher, and received at least 50 Gy of radiation to the tumor bed were eligible. All the patients were divided into two arms; Arm 1, the high-dose group was enrolled prospectively, and Arm 2, the low-dose group served as a retrospective control. Arm 1 patients received $63\~70$ Gy (Median 66 Gy, fraction size $1.8\~2$ Gy) with 3D-conformal radiotherapy, and Arm 2 received 59.4 Gy or less (Median 59.4 Gy, fraction size 1.8 Gy) with 2D-conventional radiotherapy. The Gross Tumor Volume (GTV) was defined by the surgical margin and the residual gross tumor on a contrast enhanced MRI. Surrounding edema was not included in the Clinical Target Volume (CTV) in Arm 1, so as to reduce the risk of late radiation associated complications; whereas as in Arm 2 it was included. The overall survival and progression free survival times were calculated from the date of surgery using the Kaplan-Meier method. The time to progression was measured with serial neurologic examinations and MRI or CT scans after RT completion. Acute and late toxicities were evaluated using the Radiation Therapy Oncology Group neurotoxicity scores. Results: During the relatively short follow up period of 14 months, the median overall survival and progression free survival times were $15{\pm}1.65$ and $11{\pm}0.95$ months, respectively. The was a significantly longer survival time for the Arm 1 patients compared to those in Arm 2 (p=0.028). For Arm 1 patients, the median survival and progression free survival times were $21{\pm}5.03$ and $12{\pm}1.59$ months, respectively, while for Arm 2 patients they were $14{\pm}0.94$ and $10{\pm}1.63$ months, respectively. Especially in terms of the 2-year survival rate, the high-dose group showed a much better survival time than the low-dose group; $44.7\%$ versus $19.2\%$. Upon univariate analyses, age, performance status, location of tumor, extent of surgery, tumor volume and radiation dose group were significant factors for survival. Multivariate analyses confirmed that the impact of radiation dose on survival was independent of age, performance status, extent of surgery and target volume. During the follow-up period, complications related directly with radiation, such as radionecrosis, has not been identified. Conclusion: Using 3D-conformal radiotherapy, which is able to reduce the radiation dose to normal tissues compared to 2D-conventional treatment, up to 70 Gy of radiation could be delivered to the GTV without significant toxicity. As an approach to intensify local treatment, the radiation dose escalation through 3D-CRT can be expected to increase the overall and progression free survival times for patients with glioblastomas.

A Phase I/II Trial of $DCVac/IR^{(R)}$ Dendritic Cell Immunotherapy Combined with Irradiation in Cases of Refractory Colorectal Cancer with Multiple Liver Metastases (기존의 치료에 반응하지 않는 다발성 간전이 대장암 환자에서 방사선조사와 병합한 수지상세포 면역치료의 1, 2상 임상시험)

  • Choi, Young-Min;Lee, Hyung-Sik;Kwon, Hyuk-Chan;Han, Sang-Young;Choi, Jong-Cheol;Chung, Ju-Seop;Kim, Chang-Won;Kim, Dong-Won;Kang, Chi-Duk
    • Radiation Oncology Journal
    • /
    • v.26 no.2
    • /
    • pp.104-112
    • /
    • 2008
  • Purpose: To assess the toxicity and tumor response induced by $DCVac/IR^{(R)}$ dendritic cell(DC) immunotherapy combined with irradiation for refractory colorectal cancer patients with multiple liver metastases. Materials and Methods: Between May 2004 and November 2006, applicants from a pool of refractory colorectal cancer patients with multiple liver metastases were enrolled. The patients were registered after having signed the informed consent form, which had been approved by the Institutional Review Board from the Dong-A University and Busan National University Hospital. DCs were obtained from peripheral blood of each patient, and then cultured in vitro. A total of $6{\times}10^6$ DCs were packed into a vial($DCVac/IR^{(R)}$, 0.5 ml) at the convenience of each patient's schedule. On the day before and on the day of each vaccination, each patient received a 4 Gy radiation dose to the target tumor. On the day of vaccination, the indicated dose of autologous DCs was injected into the irradiated tumor using ultrasound-guided needle injection procedures. A total of four vaccinations were scheduled at three 2-week intervals and one 4 week interval at the Dong-A University and Busan National University Hospital. If the tumor status was deemed to be stable or responding to therapy, an additional vaccination dose or two was approved at 4 week intervals beyond the fourth immunization. A tolerance test for DCs was conducted by injecting a range of doses($3{\times}10^6\;to\;12{\times}10^6$ DCs) after the 3rd injection. Moreover, the maximal tolerable dose was applied to additional patients. Treatment safety was evaluated in all patients who had at least one injection. Treatment feasibility was evaluated by the 10th week by assessing the response of patients having at least 4 injections. For systemic toxicities, the evaluation was performed using the National Cancer Institute Common Toxicity Criteria, whereas adverse effects were recorded using common WHO toxicity criteria. Results: Of the 24 registered patients, 22 received the DCs injections. Moreover, of the 14 patients that applied for the tolerance test, only 11 patients completed it because 3 patients withdrew their testing agreement. A grade 3 or more side effect, which was possibly related to the DC injection, did not occur in additional patients. The $12{\times}10^6$ DC injection was identified as the maximum tolerable dose, and was then injected in an additional 8 patients. Patients tolerated the injection fairly well, with no fatal side effects. In order to assess the feasibility of DC immunotherapy, the response was evaluated in other hepatic lesions outside of the targeted hepatic lesion. The response evaluation was performed in 15 of the 17 patients who received at least 4 injections. Stable and progressive disease was found in 4 and 11 patients, respectively. Conclusion: The DC-based immunotherapy and radiotherapy is theoretically synergistic for the local control and systemic control. The $DCVac/IR^{(R)}$ immunotherapy combined with irradiation was tolerable and safe in the evaluated cases of refractory colorectal cancer with multiple liver metastases. Future work should include well designed a phase II clinical trials.