Radiation Dose-escalation Trial for Glioblastomas with 3D-conformal Radiotherapy

3차원 입체조형치료에 의한 아교모세포종의 방사선 선량증가 연구

  • Cho, Jae-Ho (Departments of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine) ;
  • Lee, Chang-Geol (Departments of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine) ;
  • Kim, Kyoung-Ju (Departments of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine) ;
  • Bak, Jin-Ho (Departments of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine) ;
  • Lee, Se-Byeoung (Departments of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine) ;
  • Cho, Sam-Ju (Departments of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine) ;
  • Shim, Su-Jung (Su Departments of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine) ;
  • Yoon, Dok-Hyun (Departments of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine) ;
  • Chang, Jong-Hee (Departments of Neurosurgery, Yonsei University College of Medicine) ;
  • Kim, Tae-Gon (Departments of Neurosurgery, Yonsei University College of Medicine) ;
  • Kim, Dong-Suk (Departments of Neurosurgery, Yonsei University College of Medicine) ;
  • Suh, Chang-Ok (Departments of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine)
  • 조재호 (연세대학교 의과대학 연세암센터, 방사선종양학교실) ;
  • 이창걸 (연세대학교 의과대학 연세암센터, 방사선종양학교실) ;
  • 김경주 (연세대학교 의과대학 연세암센터, 방사선종양학교실) ;
  • 박진호 (연세대학교 의과대학 연세암센터, 방사선종양학교실) ;
  • 이세병 (연세대학교 의과대학 연세암센터, 방사선종양학교실) ;
  • 조삼주 (연세대학교 의과대학 연세암센터, 방사선종양학교실) ;
  • 심수정 (연세대학교 의과대학 연세암센터, 방사선종양학교실) ;
  • 윤덕현 (연세대학교 의과대학 연세암센터, 방사선종양학교실) ;
  • 장종희 (연세대학교 의과대학 신경외과학교실) ;
  • 김태곤 (연세대학교 의과대학 신경외과학교실) ;
  • 김동석 (연세대학교 의과대학 신경외과학교실) ;
  • 서창옥 (연세대학교 의과대학 연세암센터, 방사선종양학교실)
  • Published : 2004.12.01

Abstract

Purpose: To investigate the effects of radiation dose-escalation on the treatment outcome, complications and the other prognostic variables for glioblastoma patients treated with 3D-conformal radiotherapy (3D-CRT). Materials and Methods: Between Jan 1997 and July 2002, a total of 75 patients with histologically proven diagnosis of glioblastoma were analyzed. The patients who had a Karnofsky Performance Score (KPS) of 60 or higher, and received at least 50 Gy of radiation to the tumor bed were eligible. All the patients were divided into two arms; Arm 1, the high-dose group was enrolled prospectively, and Arm 2, the low-dose group served as a retrospective control. Arm 1 patients received $63\~70$ Gy (Median 66 Gy, fraction size $1.8\~2$ Gy) with 3D-conformal radiotherapy, and Arm 2 received 59.4 Gy or less (Median 59.4 Gy, fraction size 1.8 Gy) with 2D-conventional radiotherapy. The Gross Tumor Volume (GTV) was defined by the surgical margin and the residual gross tumor on a contrast enhanced MRI. Surrounding edema was not included in the Clinical Target Volume (CTV) in Arm 1, so as to reduce the risk of late radiation associated complications; whereas as in Arm 2 it was included. The overall survival and progression free survival times were calculated from the date of surgery using the Kaplan-Meier method. The time to progression was measured with serial neurologic examinations and MRI or CT scans after RT completion. Acute and late toxicities were evaluated using the Radiation Therapy Oncology Group neurotoxicity scores. Results: During the relatively short follow up period of 14 months, the median overall survival and progression free survival times were $15{\pm}1.65$ and $11{\pm}0.95$ months, respectively. The was a significantly longer survival time for the Arm 1 patients compared to those in Arm 2 (p=0.028). For Arm 1 patients, the median survival and progression free survival times were $21{\pm}5.03$ and $12{\pm}1.59$ months, respectively, while for Arm 2 patients they were $14{\pm}0.94$ and $10{\pm}1.63$ months, respectively. Especially in terms of the 2-year survival rate, the high-dose group showed a much better survival time than the low-dose group; $44.7\%$ versus $19.2\%$. Upon univariate analyses, age, performance status, location of tumor, extent of surgery, tumor volume and radiation dose group were significant factors for survival. Multivariate analyses confirmed that the impact of radiation dose on survival was independent of age, performance status, extent of surgery and target volume. During the follow-up period, complications related directly with radiation, such as radionecrosis, has not been identified. Conclusion: Using 3D-conformal radiotherapy, which is able to reduce the radiation dose to normal tissues compared to 2D-conventional treatment, up to 70 Gy of radiation could be delivered to the GTV without significant toxicity. As an approach to intensify local treatment, the radiation dose escalation through 3D-CRT can be expected to increase the overall and progression free survival times for patients with glioblastomas.

목적: 아교모세포종의 방사선치료에서 국소제어율과 생존율을 향상시켜 보고자 3차원 입체조형치료기법을 이용한 방사선선량 증가 연구를 전향적으로 시행하였다. 대상 및 방법: 1997년 1월부터 2002년 7월까지 아교모세포종으로 조직학적 진단이 되고 전신수행도(KPS)가 60 이상으로 수술 후 방사선치료를 받은 환자를 대상으로 하였다. 프로토콜에 따라 전향적으로 연구에 참여한 42예의 고선량군과 후향적 대조군인 33예의 저선량군을 비교 분석하였다 고선량군은 3차원 입체조형치료법에 의해 $63.0\~70.2$ Gy (중앙값 66 Gy)의 고선량 방사선을 조사받았으며, 저선량군은 2차원 치료방식으로 현재 표준선량으로 여겨지고 있는 59.4 Gy 정도(최소선량 50.4 Gy, 중앙선량 59.4 Gy)의 계획된 방사선치료를 종료할 수 있었던 환자들을 대상으로 하였다. 수술절제범위에 따라 나누어보면 전절제술 30예($40\%$), 준전절제술 30예($40\%$), 부분절제술 8예($11\%$), 그리고 조직생검만 시행된 환자가 7예($9\%$)였다. 각 환자의 육안종양체적은 CT 혹은 MRI상 수술절제연 및 잔류종양에 의해 정의되었다. 종양주변 부종은 저선량군에서는 임상표적체적에 포함되었지만, 고선량군에서는 재발양상 및 선량증가에 따른 합병증 증가의 가능성을 고려하여 제외하였다. 환자의 전체 및 무진행생존기간은 수술 받은 날을 기준으로 Kaplan-Meier법으로 산출하였고, 기존 문헌에 보고되고 있는 예후인자들과 각 환자에 조사된 방사선 선량, 표적체적 등이 생존율에 미치는 영향을 Log rank test 및 Cox regression analysis로 분석하였다. 추적관찰을 위해 정기적으로 MRI가 시행되었다. 결과: 전체환자의 중앙 생존기간 및 무진행 생존기간은 각각 $15{\pm}1.65$, $11{\pm}0.95$개월이었다. 중앙생존기간은 저선량군 및 고선량군이 각각 $14{\pm}0.94$개월, $21{\pm}5.03$개월로 고선량군에서 보다 나은 치료성적을 보여주었으며, 중앙무진행생존기간은 저선량군 $10{\pm}1.63$개월, 고선량군 $12{\pm}1.59$개월이었다. 특히 2년 생존율에 있어서 고선량군은 $44.7\%$$19.2\%$인 저선량군에 비해 훨씬 좋은 예후를 보였다. 단변량분석에서 예후에 영향을 미치는 중요인자로는 환자의 나이, 전신수행도, 종양의 위치, 수술절제범위, 표적체적, 방사선총선량 등이었다 다변량분석에서 통계적으로 유의한 인자는 환자의 나이(p=0.012), 수술절제범위(p=0.000), 방사선선량군(p=0.049)이었다. 방사선괴사와 같은 방사선으로 인한 직접적인 만성합병증은 추적관찰기간 동안 발생하지 않았다. 결론: 3차원 입체조형치료기법을 통하여 70 Gy까지의 방사선을 부작용 없이 조사할 수 있었고, 근치적 국소요법의 일환으로 방사선 선량증가가 전체 생존기간 및 무진행 생존기간을 향상시킬 수 있을 것으로 기대한다.

Keywords

References

  1. Andersen AP. Postoperative irradiation of glioblastomas. Resultsin a randomized series. Acta Radiol Oncol Radiat Phys Biol 1978;17:475-484
  2. Walker MD, Alexander E Jr, Hunt WE, et al. Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J Neurosurg 1978;49: 333-343 https://doi.org/10.3171/jns.1978.49.3.0333
  3. Walker MD, Strike TA, Sheline GE. An analysis of doseeffect relationship in the radiotherapy of malignant gliomas. Int J Radiat Oncol Biol Phys 1979;5:1725-1731 https://doi.org/10.1016/0360-3016(79)90553-4
  4. Chang CH, Horton J, Schoenfeld D, et al. Comparison of postoperative radiotherapy and combined postoperative radiotherapy and chemotherapy in the multidisciplinary management of malignant gliomas. A joint Radiation Therapy Oncology Group and Eastern Cooperative Oncology Group study. Cancer 1983;52:997-1007 https://doi.org/10.1002/1097-0142(19830915)52:6<997::AID-CNCR2820520612>3.0.CO;2-2
  5. Simpson WJ, Platts ME. Fractionation study in the treatment of glioblastoma multiforme. Int J Radiat Oncol Biol Phys 1976;1:639-644 https://doi.org/10.1016/0360-3016(76)90145-0
  6. Payne DG, Simpson WJ, Keen C, Platts ME. Malignant astrocytoma: hyperfractionated and standard radiotherapy with chemotherapy in a randomized prospective clinical trial. Cancer 1982;50:2301-2306 https://doi.org/10.1002/1097-0142(19821201)50:11<2301::AID-CNCR2820501114>3.0.CO;2-J
  7. Shin KH, Muller PJ, Geggie PH. Superfractionation radiation therapy in the treatment of malignant astrocytoma. Cancer 1983;52:2040-2043 https://doi.org/10.1002/1097-0142(19831201)52:11<2040::AID-CNCR2820521112>3.0.CO;2-K
  8. Shin KH, Urtasun RC, Fulton D, et al. Multiple daily fractionated radiation therapy and misonidazole in the management of malignant astrocytoma. A preliminary report. Cancer 1985;56:758-760 https://doi.org/10.1002/1097-0142(19850815)56:4<758::AID-CNCR2820560410>3.0.CO;2-2
  9. Deutsch M, Green SB, Strike TA, et al. Results of a randomized trial comparing BCNU plus radiotherapy, streptozotocin plus radiotherapy, BCNU plus hyperfractionated radiotherapy, and BCNU following misonidazole plus radiotherapy in the postoperative treatment of malignant glioma. Int J Radiat Oncol Biol Phys 1989;16:1389-1396 https://doi.org/10.1016/0360-3016(89)90939-5
  10. Werner-Wasik M, Scott CB, Nelson DF, et al. Final report of a phase I/II trial of hyperfractionated and accelerated hyperfractionated radiation therapy with carmustine for adults with supratentorial malignant gliomas. Radiation Therapy Oncology Group Study 83-02. Cancer 1996;77:1535-1543 https://doi.org/10.1002/(SICI)1097-0142(19960415)77:8<1535::AID-CNCR17>3.0.CO;2-0
  11. Marks JE, Wong J. The risk of cerebral radionecrosis in relation to dose, time and fractionation. A follow-up study. Prog Exp Tumor Res 1985;29:210-218
  12. Loeffler JS, Alexander E 3rd, Hochberg FH, et al. Clinical patterns of failure following stereotactic interstitial irradiation for malignant gliomas. Int J Radiat Oncol Biol Phys 1990;19:1455-62 https://doi.org/10.1016/0360-3016(90)90358-Q
  13. Mehta MP, Masciopinto J, Rozental J, et al. Stereotactic radiosurgery for glioblastoma multiforme: report of a prospective study evaluating prognostic factors and analyzing long-term survival advantage. Int J Radiat Oncol Biol Phys 1994;30:541-549 https://doi.org/10.1016/0360-3016(92)90939-F
  14. Scally LT, Lin C, Beriwal S, Brady LW. Brain, Brain Stem, andCerebellum. In: Perez CA, Brady LW, eds. Principles and Practice of Radiation Oncology. 2nd ed. Philadelphia, PA: Lippincott Co. 1992:97-113
  15. Purdy JA. 3D treatment planning and intensity-modulated radiation therapy. Oncology (Huntingt) 1999;13:155-168
  16. Jeremic B, Grujicic D, Antunovic V, Djuric L, Shibamoto Y. Accelerated hyperfractionated radiation therapy for malignant glioma. A phase II study. Am J Clin Oncol 1995; 18:449-453 https://doi.org/10.1097/00000421-199510000-00019
  17. Curran WJ Jr, Scott CB, Horton J, et al. Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. J Natl Cancer Inst 1993;85:704-710 https://doi.org/10.1093/jnci/85.9.704
  18. Kinsella TJ, Collins J, Rowland J, et al. Pharmacology and phase I/II study of continuous intravenous infusions of iododeoxyuridine and hyperfractionated radiotherapy in patients with glioblastoma multiforme. J Clin Oncol 1988;6:871-879
  19. Coffey RJ, Lunsford LD, Taylor FH. Survival after stereotactic biopsy of malignant gliomas. Neurosurgery 1988;22:465-473 https://doi.org/10.1227/00006123-198803000-00003
  20. Andreou J, George AE, Wise A, et al. CT prognostic criteria of survival after malignant glioma surgery. AJNR Am J Neuroradiol 1983;4:488-490
  21. Hochberg FH, Pruitt A. Assumptions in the radiotherapy of glioblastoma. Neurology 1980;30:907-911 https://doi.org/10.1212/WNL.30.9.907
  22. Garden AS, Maor MH, Yung WK, et al. Outcome and patterns of failure following limited-volume irradiation for malignant astrocytomas. Radiother Oncol 1991;20:99-110 https://doi.org/10.1016/0167-8140(91)90143-5
  23. Chan JL, Lee SW, Fraass BA, et al. Survival and failure patterns of high-grade gliomas after three-dimensional conformal radiotherapy. J Clin Oncol 2002;20:1635-1642 https://doi.org/10.1200/JCO.20.6.1635
  24. Lee SW, Fraass BA, Marsh LH, et al. Patterns of failure following high-dose 3-D conformal radiotherapy for highgrade astrocytomas: a quantitative dosimetric study. Int J Radiat Oncol Biol Phys 1999;43:79-88 https://doi.org/10.1016/S0360-3016(98)00266-1
  25. Wallner KE, Galicich JH, Krol G, Arbit E, Malkin MG. Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys 1989;16:1405-1409 https://doi.org/10.1016/0360-3016(89)90941-3
  26. Chang SK, Suh CO, Lee SW, Keum KC, Kim GE. Analysis of prognostic factors in glioblastoma multiforme. J Kor Soc Ther Radiol Oncol 1996;14:181-189
  27. Cho H, Choi Y. Optimal radiation therapy field for malignant astrocytoma and glioblastoma multiforme. J Kor Soc Ther Radiol Oncol 2002;20:199-205
  28. Raaphorst GP, Feeley MM, Da Silva VF, Danjoux CE, Gerig LH. A comparison of heat and radiation sensitivity of three human glioma cell lines. Int J Radiat Oncol Biol Phys 1989;17:615-622 https://doi.org/10.1016/0360-3016(89)90114-4
  29. Bentzen SM, Overgaard J, Thames HD, et al. Clinical radiobiology of malignant melanoma. Radiother Oncol 1989;16:169-182 https://doi.org/10.1016/0167-8140(89)90017-0
  30. Brenner DJ, Martinez AA, Edmundson GK, Mitchell C, Thames HD, Armour EP. Direct evidence that prostate tumors show high sensitivity to fractionation (low alpha/beta ratio), similar to late-responding normal tissue. Int J Radiat Oncol Biol Phys 2002;52:6-13 https://doi.org/10.1016/S0360-3016(01)02664-5
  31. Hasegawa M, Niibe H, Mitsuhashi N, et al. Hyperfractionated and hypofractionated radiation therapy for human malignant glioma xenograft in nude mice. Jpn J Cancer Res 1995;86:879-884 https://doi.org/10.1111/j.1349-7006.1995.tb03100.x
  32. Tamura M, Nakamura M, Kunimine H, Ono N, Zama A, Hayakawa K, Niibe H. Large dose fraction radiotherapy in the treatment of glioblastoma. J Neurooncol 1989;7:113-119 https://doi.org/10.1007/BF00165095
  33. Kapp DS, Wagner FC, Lawrence R. Glioblastoma multiforme: treatment by large dose fraction irradiation and metronidazole. Int J Radiat Oncol Biol Phys 1982;8:351-345 https://doi.org/10.1016/0360-3016(82)90638-1