A Phase I/II Trial of $DCVac/IR^{(R)}$ Dendritic Cell Immunotherapy Combined with Irradiation in Cases of Refractory Colorectal Cancer with Multiple Liver Metastases

기존의 치료에 반응하지 않는 다발성 간전이 대장암 환자에서 방사선조사와 병합한 수지상세포 면역치료의 1, 2상 임상시험

  • Choi, Young-Min (Departments of Radiation Oncology, Dong-A University School of Medicine) ;
  • Lee, Hyung-Sik (Departments of Radiation Oncology, Dong-A University School of Medicine) ;
  • Kwon, Hyuk-Chan (Departments of Hemato-oncology, Dong-A University School of Medicine) ;
  • Han, Sang-Young (Departments of Gastroenterology, Dong-A University School of Medicine) ;
  • Choi, Jong-Cheol (Departments of Radiology, Dong-A University School of Medicine) ;
  • Chung, Ju-Seop (Departments of Hemato-oncology, Busan National University School of Medicine) ;
  • Kim, Chang-Won (Departments of Radiology, Busan National University School of Medicine) ;
  • Kim, Dong-Won (Departments of Radiation Oncology, Busan National University School of Medicine) ;
  • Kang, Chi-Duk (Departments of Biochemistry, Busan National University School of Medicine)
  • 최영민 (동아대학교 의과대학 방사선종양학교실) ;
  • 이형식 (동아대학교 의과대학 방사선종양학교실) ;
  • 권혁찬 (동아대학교 의과대학 혈액종양학교실) ;
  • 한상영 (동아대학교 의과대학 소화기내과학교실) ;
  • 최종철 (동아대학교 의과대학 영상의학교실) ;
  • 정주섭 (부산대학교 의과대학 혈액종양학교실) ;
  • 김창원 (부산대학교 의과대학 영상의학교실) ;
  • 김동원 (부산대학교 의과대학 방사선종양학교실) ;
  • 강치덕 (부산대학교 의과대학 생화학교실)
  • Published : 2008.06.30

Abstract

Purpose: To assess the toxicity and tumor response induced by $DCVac/IR^{(R)}$ dendritic cell(DC) immunotherapy combined with irradiation for refractory colorectal cancer patients with multiple liver metastases. Materials and Methods: Between May 2004 and November 2006, applicants from a pool of refractory colorectal cancer patients with multiple liver metastases were enrolled. The patients were registered after having signed the informed consent form, which had been approved by the Institutional Review Board from the Dong-A University and Busan National University Hospital. DCs were obtained from peripheral blood of each patient, and then cultured in vitro. A total of $6{\times}10^6$ DCs were packed into a vial($DCVac/IR^{(R)}$, 0.5 ml) at the convenience of each patient's schedule. On the day before and on the day of each vaccination, each patient received a 4 Gy radiation dose to the target tumor. On the day of vaccination, the indicated dose of autologous DCs was injected into the irradiated tumor using ultrasound-guided needle injection procedures. A total of four vaccinations were scheduled at three 2-week intervals and one 4 week interval at the Dong-A University and Busan National University Hospital. If the tumor status was deemed to be stable or responding to therapy, an additional vaccination dose or two was approved at 4 week intervals beyond the fourth immunization. A tolerance test for DCs was conducted by injecting a range of doses($3{\times}10^6\;to\;12{\times}10^6$ DCs) after the 3rd injection. Moreover, the maximal tolerable dose was applied to additional patients. Treatment safety was evaluated in all patients who had at least one injection. Treatment feasibility was evaluated by the 10th week by assessing the response of patients having at least 4 injections. For systemic toxicities, the evaluation was performed using the National Cancer Institute Common Toxicity Criteria, whereas adverse effects were recorded using common WHO toxicity criteria. Results: Of the 24 registered patients, 22 received the DCs injections. Moreover, of the 14 patients that applied for the tolerance test, only 11 patients completed it because 3 patients withdrew their testing agreement. A grade 3 or more side effect, which was possibly related to the DC injection, did not occur in additional patients. The $12{\times}10^6$ DC injection was identified as the maximum tolerable dose, and was then injected in an additional 8 patients. Patients tolerated the injection fairly well, with no fatal side effects. In order to assess the feasibility of DC immunotherapy, the response was evaluated in other hepatic lesions outside of the targeted hepatic lesion. The response evaluation was performed in 15 of the 17 patients who received at least 4 injections. Stable and progressive disease was found in 4 and 11 patients, respectively. Conclusion: The DC-based immunotherapy and radiotherapy is theoretically synergistic for the local control and systemic control. The $DCVac/IR^{(R)}$ immunotherapy combined with irradiation was tolerable and safe in the evaluated cases of refractory colorectal cancer with multiple liver metastases. Future work should include well designed a phase II clinical trials.

목적: 기존치료에 반응하지 않는 다발성 간전이를 동반한 대장암 환자에서 방사선치료와 병합한 수지상세포 면역치료의 독성과 반응도를 조사하였다. 대상 및 방법: 2004년 5월부터 2006년 11월까지 다발성 간전이가 동반된 대장암 환자들 중에서 항암화학 요법에 반응하지 않은 환자 중 지원자를 대상으로 연구를 시행하였다. 본 임상 시험에 대하여 동아대학교병원과 부산대학교병원의 임상윤리심의위원회의 허가를 획득하였고, 동의서에 서명한 환자들을 임상 시험의 대상으로 등록하였다. 환자의 말초 혈액으로부터 수지상세포를 추출하여 배양하였다. 임상시험 일자에 맞추어서 $6{\times}10^6$개의 수지상세포를 바이알(0.5 ml)에 넣어서 디씨백/아이알 주사를 만들었다. 수지상세포 면역치료는 2주 간격으로 간전이암조직에 3회 주사하고, 5주에 내약성 평가를 하였다. 내약성 평가를 통과한 환자에게는 8주에 4번째 수지상세포 면역치료를 하였다. 병의 악화가 없거나 임상시험에 대한 환자의 동의 철회가 없는 경우에는 5, 6번째 수지상세포 면역치료를 각각 12, 16주에 시행하였다. 방사선치료는 수지상세포 면역치료를 주사할 간전이암 부위에 주사하기 전일 및 당일에 4 Gy씩을 조사하였다. 내약성 평가는 $3{\times}10^6$개의 수지상세포로부터 시작하여, $12{\times}10^6$개의 수지상세포까지 시행하였다. 내약성 평가의 최대 내성 용량으로 추가 임상시험을 하였다. 수지상세포 면역치료 주사를 맞은 모든 환자들에서 안전성 평가를 하였다. 4회 이상 주사를 맞은 환자들을 대상으로 10주에 치료 반응을 평가하여 유효성을 조사하였다. 결과: 임상시험에 등록한 24명 중 22명에서 수지상세포 면역치료를 시행하였다. 내성약 평가에는 14명이 등록하여 11명에서 평가를 완료하였다. 시험약과의 관련성이 있을 것으로 생각되는 grade 3 이상의 약물반응으로 인한 이상반응은 없었다. $12{\times}10^6$개의 수지상세포를 내성용량으로 확인하였고, 내성용량인 $12{\times}10^6$개 수지상세포 면역치료를 이용하여 8명에서 추가로 시험을 하였다. 치료에 대한 환자들의 내성은 양호하였고, grade 3을 초과하는 치명적인 부작용은 발생되지 않았다. 4회 이상의 수지상세포 면역치료 주사를 받은 환자가 17명이었고, 이 중의 15명에서는 종양의 반응도 평가가 이루어졌다. 본 연구의 목적은 안전성 평가이지만, 면역치료의 유효성 평가를 위해, 방사선치료와 수지상세포 면역치료 주사가 시행된 부위 외의 간전이암에서 반응도를 조사 하였다. 면역치료의 반응은 평가가 이루어진 환자들에서 정지성 병변이 4명, 진행성 병변이 11명 이었다. 결론: 수지상세포 면역치료와 병행한 방사선치료는 이론적으로 국소 및 전신 제어에 상승효과가 있을 것으로 기대할 수 있다. 하지만 기존 치료에 반응하지 않는 매우 진행된 직장암 환자들을 대상으로 한 본 연구에서는 방사선 치료와 병합한 수지상세포 면역치료로 인한 심각한 부작용의 발생은 없었다는 결과와 4예에서의 정지성 병변의 관찰을 보고한다. 수지상세포의 최대 투여 용량, 적절한 투여 방법, 적절한 방사선의 양, 방사선과 수지상 세포의 적절한 투여 간격 등에 관한 추가 연구를 통하여, 향후 제 2상, 3상 시험으로서의 진행 여부에 긍정적인 결과를 얻을 수 있다고 판단한다.

Keywords

References

  1. Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 1991;9:271-296 https://doi.org/10.1146/annurev.iy.09.040191.001415
  2. Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000;18:767-811 https://doi.org/10.1146/annurev.immunol.18.1.767
  3. Zhou LJ, Tedder TF. A distinct pattern of cytokine gene expression by human CD83+ blood dendritic cells. Blood 1995;86:3295-3301
  4. Sadanaga N, Nagashima H, Mashino K, et al. Dendritic cell vaccination with MAGE peptide is a novel therapeutic approach for gastrointestinal carcinomas. Clin Cancer Res 2001; 7:2277-2284
  5. Fong L, Hou Y, Rivas A, et al. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci USA 2001;98:8809-8814 https://doi.org/10.1073/pnas.141226398
  6. Morse MA, Deng Y, Coleman D, et al. A phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen. Clin Cancer Res 1999;5:1331-1338
  7. Geiger JD, Hutchinson RJ, Hohenkirk LF, et al. Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression. Cancer Res 2001;61:8513-8519
  8. Lin CL, Lo WF, Lee TH, et al. Immunization with Epstein- Barr Virus (EBV) peptide-pulsed dendritic cells induces functional CD8+ T-cell immunity and may lead to tumor regression in patients with EBV-positive nasopharyngeal carcinoma. Cancer Res 2002;62:6952-6958
  9. Chang AE, Redman BG, Whitfield JR, et al. A phase I trial of tumor lysate-pulsed dendritic cells in the treatment of advanced cancer. Clin Cancer Res 2002;8:1021-1032
  10. Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 1998;4:328-332 https://doi.org/10.1038/nm0398-328
  11. Thurner B, Haendle I, Röder C, et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 1999;190:1669-1678 https://doi.org/10.1084/jem.190.11.1669
  12. Schuler-Thurner B, Dieckmann D, Keikavoussi P, et al. Mage-3 and influenza-matrix peptide-specific cytotoxic T cells are inducible in terminal stage HLA-A2.1+ melanoma patients by mature monocyte-derived dendritic cells. J Immunol 2000; 165:3492-3496 https://doi.org/10.4049/jimmunol.165.6.3492
  13. Schuler-Thurner B, Schultz ES, Berger TG, et al. Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J Exp Med 2002;195:1279-1288 https://doi.org/10.1084/jem.20012100
  14. Lau R, Wang F, Jeffery G, et al. Phase I trial of intravenous peptide-pulsed dendritic cells in patients with metastatic melanoma. J Immunother 2001;24:66-78 https://doi.org/10.1097/00002371-200101000-00008
  15. Jonuleit H, Giesecke-Tuettenberg A, Tüting T, et al. A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int J Cancer 2001;93:243-251 https://doi.org/10.1002/ijc.1323
  16. Smithers M, O'Connell K, MacFadyen S, et al. Clinical response after intradermal immature dendritic cell vaccination in metastatic melanoma is associated with immune response to particulate antigen. Cancer Immunol Immunother 2003;52:41-52
  17. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 1973;137:1142-1162 https://doi.org/10.1084/jem.137.5.1142
  18. Hsu FJ, Benike C, Fagnoni F, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 1996;2:52-58 https://doi.org/10.1038/nm0196-52
  19. Nair SK, Hull S, Coleman D, Gilboa E, Lyerly HK, Morse MA. Induction of carcinoembryonic antigen (CEA)- specific cytotoxic T-lymphocyte responses in vitro using autologous dendritic cells loaded with CEA peptide or CEA RNA in patients with metastatic malignancies expressing CEA. Int J Cancer 1999;82:121-124 https://doi.org/10.1002/(SICI)1097-0215(19990702)82:1<121::AID-IJC20>3.0.CO;2-X
  20. Mayordomo JI, Andres R, Isla MD, et al. Results of a pilot trial of immunotherapy with dendritic cells pulsed with autologous tumor lysates in patients with advanced cancer. Tumori 2007;93:26-30 https://doi.org/10.1177/030089160709300106
  21. Kotera Y, Shimizu K, Mulé JJ. Comparative analysis of necrotic and apoptotic tumor cells as a source of antigen(s) in dendritic cell-based immunization. Cancer Res 2001;61: 8105-8109
  22. Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 1994;179:1109-1118 https://doi.org/10.1084/jem.179.4.1109
  23. Romani N, Gruner S, Brang D, et al. Proliferating dendritic cell progenitors in human blood. J Exp Med 1994;180:83-93 https://doi.org/10.1084/jem.180.1.83
  24. Iwashita Y, Tahara K, Goto S, et al. A phase I study of autologous dendritic cell-based immunotherapy for patients with unresectable primary liver cancer. Cancer Immunol Immunother 2003;52:155-161
  25. Dong J, McPherson CM, Stambrook PJ. Flt-3 ligand: a potent dendritic cell stimulator and novel antitumor agent. Cancer Biol Ther 2002;1:486-489 https://doi.org/10.4161/cbt.1.5.161
  26. Dallal RM, Lotze MT. The dendritic cell and human cancer vaccines. Curr Opin Immunol 2000;12:583-588 https://doi.org/10.1016/S0952-7915(00)00146-1
  27. Kim KW, Kim SH, Shin JG, et al. Direct injection of immature dendritic cells into irradiated tumor induces efficient antitumor immunity. Int J Cancer 2004;109:685-690 https://doi.org/10.1002/ijc.20036
  28. Haenssle HA, Krause SW, Emmert S, et al. Hybrid cell vaccination in metastatic melanoma: clinical and immunologic results of a phase I/II study. J Immunother 2004;27:147-155 https://doi.org/10.1097/00002371-200403000-00008
  29. Reichardt VL, Milazzo C, Brugger W, Einsele H, Kanz L, Brossart P. Idiotype vaccination of multiple myeloma patients using monocyte-derived dendritic cells. Haematologica 2003;88:1139-1149
  30. Timmerman JM, Czerwinski DK, Davis TA, et al. Idiotypepulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 2002;99:1517-1526 https://doi.org/10.1182/blood.V99.5.1517
  31. Litzow MR, Dietz AB, Bulur PA, et al. Testing the safety of clinical-grade mature autologous myeloid DCs in a phase I clinical immunotherapy trial of CML. Cytotherapy 2006;8:290-298 https://doi.org/10.1080/14653240600735743
  32. Tjoa BA, Murphy GP. Progress in active specific immunotherapy of prostate cancer. Semin Surg Oncol 2000;18:80-87 https://doi.org/10.1002/(SICI)1098-2388(200001/02)18:1<80::AID-SSU10>3.0.CO;2-A
  33. Holtl L, Zelle-Rieser C, Gander H, et al. Immunotherapy of metastatic renal cell carcinoma with tumor lysate-pulsed autologous dendritic cells. Clin Cancer Res 2002;8:3369-3376
  34. de Vleeschouwer S, Rapp M, Sorg RV, et al. Dendritic cell vaccination in patients with malignant gliomas: current status and future directions. Neurosurgery 2006;59:988-999