• Title/Summary/Keyword: local gradient

Search Result 457, Processing Time 0.02 seconds

Super Resolution Image Reconstruction based on Local Gradient and Median Filter (Local Gradient와 Median Filter에 근거한 초해상도 이미지 재구성)

  • Hieu, Tran Trung;Cho, Sang-Bock
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.120-127
    • /
    • 2010
  • This paper presents a SR method using adaptive interpolation based on local gradient features to obtain a high quality SR image. In this method, the distance between the interpolated pixel and the neighboring valid pixel is considered by using local gradient properties. The interpolation coefficients take the local gradient of the LR images into account. The smaller the local gradient of a pixel is, the more influence it should have on the interpolated pixel. And the median filter is finally applied to reduce the blurring and noise of the interpolated HR image. Experiment results show the effectiveness of the proposed method in comparison with other methods, especially in the edge areas of the images.

Compression of Image Data Using Neural Networks based on Conjugate Gradient Algorithm and Dynamic Tunneling System

  • Cho, Yong-Hyun;Kim, Weon-Ook;Bang, Man-Sik;Kim, Young-il
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.740-749
    • /
    • 1998
  • This paper proposes compression of image data using neural networks based on conjugate gradient method and dynamic tunneling system. The conjugate gradient method is applied for high speed optimization .The dynamic tunneling algorithms, which is the deterministic method with tunneling phenomenon, is applied for global optimization. Converging to the local minima by using the conjugate gradient method, the new initial point for escaping the local minima is estimated by dynamic tunneling system. The proposed method has been applied the image data compression of 12 ${\times}$12 pixels. The simulation results shows the proposed networks has better learning performance , in comparison with that using the conventional BP as learning algorithm.

SOME DOUBLY-WARPED PRODUCT GRADIENT RICCI SOLITONS

  • Kim, Jongsu
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.625-635
    • /
    • 2016
  • In this paper, we study certain doubly-warped products which admit gradient Ricci solitons with harmonic Weyl curvature and non-constant soliton function. The metric is of the form $g=dx^2_1+p(x_1)^2dx^2_2+h(x_1)^2\;{\tilde{g}}$ on ${\mathbb{R}}^2{\times}N$, where $x_1$, $x_2$ are the local coordinates on ${\mathbb{R}}^2$ and ${\tilde{g}}$ is an Einstein metric on the manifold N. We obtained a full description of all the possible local gradient Ricci solitons.

Minimization Method for Solving a Quadratic Matrix Equation

  • Kim, Hyun-Min
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.2
    • /
    • pp.239-251
    • /
    • 2007
  • We show how the minimization can be used to solve the quadratic matrix equation and then compare two different types of conjugate gradient method which are Polak and Ribi$\acute{e}$re version and Fletcher and Reeves version. Finally, some results of the global and local convergence are shown.

  • PDF

A Level Set Method to Image Segmentation Based on Local Direction Gradient

  • Peng, Yanjun;Ma, Yingran
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1760-1778
    • /
    • 2018
  • For image segmentation with intensity inhomogeneity, many region-based level set methods have been proposed. Some of them however can't get the relatively ideal segmentation results under the severe intensity inhomogeneity and weak edges, and without use of the image gradient information. To improve that, we propose a new level set method combined with local direction gradient in this paper. Firstly, based on two assumptions on intensity inhomogeneity to images, the relationships between segmentation objects and image gradients to local minimum and maximum around a pixel are presented, from which a new pixel classification method based on weight of Euclidian distance is introduced. Secondly, to implement the model, variational level set method combined with image spatial neighborhood information is used, which enhances the anti-noise capacity of the proposed gradient information based model. Thirdly, a new diffusion process with an edge indicator function is incorporated into the level set function to classify the pixels in homogeneous regions of the same segmentation object, and also to make the proposed method more insensitive to initial contours and stable numerical implementation. To verify our proposed method, different testing images including synthetic images, magnetic resonance imaging (MRI) and real-world images are introduced. The image segmentation results demonstrate that our method can deal with the relatively severe intensity inhomogeneity and obtain the comparatively ideal segmentation results efficiently.

Fast MR Imaging Technique by Using Locally-Linear Gradient Field (부분적인 경사자계를 이용한 고속 자기공명 영상촬영기법)

  • 양윤정;이종권
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.93-98
    • /
    • 1996
  • The purpose of this paper is to propose a new localized imaging method of reduced imaging time luting a locally-linear gradient. Since most fast MR(Magnetic Resonance) imaging methods need the whole $\kappa$-space(Spatial frequency space) data corresponding to the whole imaging area, there are limitstions in reducing the minimum imaging time. The imaging method proposed in this paper uses a specially-made gradient coil generating a local ramp-shape field and uniform field outside of the imaging areal Conventional imaging sequences can be used without any RF/gradient pulse sequence modifiestions except the change in the number of encoding steps and the field of view.

  • PDF

A NUMERICAL METHOD FOR THE PROBLEM OF COEFFICIENT IDENTIFICATION OF THE WAVE EQUATION BASED ON A LOCAL OBSERVATION ON THE BOUNDARY

  • Shirota, Kenji
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.509-518
    • /
    • 2001
  • The purpose of this paper is to propose a numerical algorithm for the problem of coefficient identification of the scalar wave equation based on a local observation on the boundary: Determine the unknown coefficient function with the knowledge of simultaneous Dirichlet and Neumann boundary values on a part of boundary. To find the unknown coefficient function, the unknown Neumann boundary value is also identified. We recast our inverse problem to variational problem. The gradient method is applied to find the minimizing functions. We confirm the effectiveness of our algorithm by numerical experiments.

  • PDF

PPD: A Robust Low-computation Local Descriptor for Mobile Image Retrieval

  • Liu, Congxin;Yang, Jie;Feng, Deying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.305-323
    • /
    • 2010
  • This paper proposes an efficient and yet powerful local descriptor called phase-space partition based descriptor (PPD). This descriptor is designed for the mobile image matching and retrieval. PPD, which is inspired from SIFT, also encodes the salient aspects of the image gradient in the neighborhood around an interest point. However, without employing SIFT's smoothed gradient orientation histogram, we apply the region based gradient statistics in phase space to the construction of a feature representation, which allows to reduce much computation requirements. The feature matching experiments demonstrate that PPD achieves favorable performance close to that of SIFT and faster building and matching. We also present results showing that the use of PPD descriptors in a mobile image retrieval application results in a comparable performance to SIFT.

Nonlinear resonance of porous functionally graded nanoshells with geometrical imperfection

  • Wu-Bin Shan;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.355-368
    • /
    • 2023
  • Employing the non-local strain gradient theory (NSGT), this paper investigates the nonlinear resonance characteristics of functionally graded material (FGM) nanoshells with initial geometric imperfection for the first time. The effective material properties of the porous FGM nanoshells with even distribution of porosities are estimated by a modified power-law model. With the guidance of Love's thin shell theory and considering initial geometric imperfection, the strain equations of the shells are obtained. In order to characterize the small-scale effect of the nanoshells, the nonlocal parameter and strain gradient parameter are introduced. Subsequently, the Euler-Lagrange principle was used to derive the motion equations. Considering three boundary conditions, the Galerkin principle combined with the modified Lindstedt Poincare (MLP) method are employed to discretize and solve the motion equations. Finally, the effects of initial geometric imperfection, functional gradient index, strain gradient parameters, non-local parameters and porosity volume fraction on the nonlinear resonance of the porous FGM nanoshells are examined.

Localized Plastic Deformation in Plastic Strain Gradient Incorporated Combined Two-Back Stress Hardening Model (변형량 기울기 이론이 조합된 이중후방응력 경화모델에서의 국부적 소성변형)

  • Yun, Su-Jin;Lee, Sang-Youn;Park, Dong-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.528-535
    • /
    • 2011
  • In the present, the formation of shear band under a simple shear deformation is investigated using a rate-independent elastic-plastic constitutive relations. Moreover, the strain gradient terms are incorporated to obtain a non-local plastic constitutive relation, which in turn represented using combined two-back stress hardening model. Then, the continuum damage model is also included to the proposed model. The post-localization behavior are studied by introducing a small imperfection in a work piece. The strain gradient affects the shear localization significantly such that the intensity of shear band decreases as the strain gradient coefficient increases when the J2 flow theory is employed.

  • PDF