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Abstract. We show how the minimization can be used to solve the quadratic matrix
equation and then compare two different types of conjugate gradient method which are
Polak and Ribiére version and Fletcher and Reeves version. Finally, some results of the
global and local convergence are shown.

1. Introduction

In this paper we consider numerical methods based on nonlinear minimization to solve
the quadratic matrix equation

(1.1) Q(X) = AX2 + BX + C = 0, A, B, C, X ∈ C
n×n.

Some minimization methods for the general nonlinear equations, for example, the conju-
gate gradient method [7, Chap. 4], [9, Chap. 4], [15, Sec. 5.2] and nonlinear least-squares
problems [5, Chap. 10], [15, Chap. 10] have been much studied. Before considering these
methods for solving the quadratic matrix equation we consider two vital questions:

• What kind of minimizer of fS(x) can we find?

• Is the minimizer of fS(x) a solvent of fG(x)?

where fG(x) = 0 is the general nonlinear equation from R
n to R

n and fS(x) =
1

2
‖fG(x)‖2

2

is the objective function from R
n to R. For the answer of the first question we can consider

the global and local minimizers. The global minimizer would be the best one but it can be
difficult to find, because our information of fS(x) is usually restricted. The second choice
would be the local minimizer. The next theorem gives a necessary condition for a local
minimizer.

Theorem 1.1 [15, Thm. 2.2]. If x∗ is a local minimizer and fS(x) is continuously differ-
entiable in an open neighbourhood of x∗, then

∇fS(x∗) = 0,

where

∇fS(x) =

(

δfS

δxi

)

∈ R
n.
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Note that ∇fS(x) = 0 is a necessary condition for a local minimizer but it is not
sufficient. We call x a stationary point if ∇fS(x) = 0. Consider the function

fS(x) = (
√

x3 + 1)2 for x ≥ −1.

This function has a global minimum at x = −1 but f ′
S(0) = 0 and fS(0) = 1 is not a

minimum or a maximum. This example shows that a point x ∈ R can be a stationary
point but not a local minimizer.

The next result shows that when the objective function fS(x) is convex, any local
minimizer is a global minimizer.

Theorem 1.2 [15, Thm. 2.5]. When the function fS satisfies that

fS(αx + (1 − α)y) ≤ αfS(x) + (1 − α)fS(y)

for all x, y ∈ D(fS)(the domain of the function fS) and 0 ≤ α ≤ 1, any local minimizer x∗

is a global minimizer of fS. If in addition fS is differentiable, then any stationary point
x∗ is a global minimizer of fS.

The answer of the second question is if the general nonlinear equation fG(x) = 0 has
a solution x∗ then

fS(x∗) =
1

2
‖fG(x∗)‖2

2 = 0

and the global minimizer is clearly x∗. However, there may be local minima for which
fS > 0.

We now define the gradient and Hessian for general nonlinear matrix equation G(X) =
0, where G : R

n×n → R
n×n. Suppose we wish to solve the nonlinear matrix equation,

G(X) = 0. One approach is to apply a minimization method to the function

g(X) =
1

2
‖G(X)‖2

F ,

where g : R
n×n → R. We can also regard g as a mapping R

n2

→ R if we write the variables
as ξ = vec(X), where

vec(X) = [x11, · · · , xn1, x12, · · · , xn2, · · · , x1n, · · · , xnn]T ∈ R
n2

.

The gradient of g can be written as the matrix

∇g(X) =

(

δg

δxij

)

∈ R
n×n

and the Hessian

∇2g(X) =

(

δ2g

δξiδξj

)

∈ R
n2

×n2

.

We now obtain an expression for the gradient of the function g(X). Assuming that G
is twice continuously differentiable we have the expansion

G(X + E) = G(X) + G′

X(E) + NX(E),(1.2)
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where G′
X(E) : R

n×n → R
n×n is the Fréchet derivative of G at X in the direction E and

NX(E) = O(‖E‖)2. Applying the vec operator gives

vec(G(X + E)) = r + d + n,

where r = vec(G), d = vec(G′
X(E)) and n = vec(NX(E)). Thus

g(X + E) =
1

2
‖G(X + E)‖2

F(1.3)

=
1

2
(r + d + n)T (r + d + n)

=
1

2
(rT r + 2rT d + O(‖E‖2).

This expansion must agree with the Taylor series

g(X + E)(1.4)

= g(X) + (vec(∇g(X))T vec(E) + (vec(E))T∇2g(X)vec(E) + O(‖E‖)3

= g(X) + trace(∇g(X)T E) + (vec(E))T∇2g(X)vec(E) + O(‖E‖)3.

Therefore

trace(∇g(X)T E) ≡ rT d = (vec(G(X)))T vec(G′

X(E)),

which can be rewritten as

trace(ET∇g) = trace(G(X)T G′

X(E)).

We can use this equation to determine ∇g by setting E = eie
T
j and using trace(AB) =

trace(BA):

(∇g)ij = trace(eje
T
i ∇g)(1.5)

= trace(G(X)T G′

X(eie
T
j )).

By equating the second order terms in and we find that, writing quad(y) for the
quadratic part of y in variable E,

(vec(E))T∇2g(X)vec(E) =
1

2
(dT d + 2rT quad(s))(1.6)

=
1

2
trace

(

G′

X(E)T G′

X(E)

+ 2G(X)T quad(NX(E))
)

.

We will not attempt to simplify this expression further for general G. However, we can
answer the important question of whether the Hessian is positive definite at a solution. At
a solution X we have G(S) = 0 and so

(vec(E))T∇2g(X)vec(E) =
1

2
trace(G′

X(E)T G′

X(E)).

Hence the Hessian of g is positive definite at X if and only if trace(G′
X(E)T G′

X(E)) > 0
for all nonzero E, that is, if and only if G′

X is nonsingular.
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Using the gradient of g(X) = ‖G(X)‖2
F , ∇g(X), we can apply several numerical

methods based on minimization.

2. Conjugate gradient method for Q(X) = 0

The conjugate gradient method for solving a nonlinear equation was introduced by
Fletcher and Reeves [6]. This nonlinear conjugate gradient method can be adapted to
solve the quadratic matrix equation with the function

(2.1) f(X) =
1

2
‖Q(X)‖2

F ,

where f : R
n×n → R, and use the conjugate gradient method to find

min
X∈Rn×n

f(X).

To adapt the conjugate gradient method for solving Q(X) = 0 we first define the gradient
and Hessian of the objective function f(X). By expanding Q(X+E) we find that DX(E) =
AEX + (AX + B)E. Therefore, from

(∇f)ij = trace(Q(X)T (Aeie
T
j X + (AX + B)eie

T
j ))

= eT
j XQ(X)T Aei + eT

j Q(X)T (AX + B)ei

and hence

∇f(X) = AT Q(X)XT + (AX + B)T Q(X).(2.2)

Also, from a result of Chu [2] on the generalized Sylvester equation it follows that DX

is nonsingular if the pair (A, AX + B) is regular (that is, det(A − λ(AX + B)) is not
identically zero in λ) and the eigenvalues of the pair are distinct from the eigenvalues of
−X.

To obtain the Hessian we note that NX(E) = AE2 and so can be written

(vec(E))T∇2f(X)vec(E)

=
1

2
trace

(

(AEX + (AX + B)E)T (AEX + (AX + B)E) + 2Q(X)T AE2).

Setting E = eie
T
j and r = (j − 1)n + i we have

eT
r ∇

2f(X)er(2.3)

=
1

2
trace

(

[XT eje
T
i AT + eje

T
i (AX + B)T ][Aeie

T
j X + (AX + B)eie

T
j ]

+2Q(X)T Aeie
T
j (eT

j ei)
)

=
1

2
trace(XT ej(e

T
i AT Aei)e

T
j X + 2XT eje

T
i AT (AX + B)eie

T
j

+eje
T
i (AX + B)T (AX + B)eie

T
j + 2(eT

j ei)e
T
j Q(X)T Aei)

=
1

2

(

(AT A)ii(XXT )jj + 2(AT (AX + B))iixjj

+((AX + B)T (AX + B))ii + 2(eT
j ei)(Q(X)T A)ji

)

.
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This determines the diagonal elements of the Hessian. From the identity

(2.4) (ei + ej)
T A(ei + ej) = aii + 2aij + ajj

it follows that we can determine the off-diagonal entries of ∇2f by evaluating (ei +
ej)

T∇2f(X)(ei + ej) for all i 6= j.
The conjugate gradient method algorithm for solving the quadratic matrix equation

(1 1) can be simply defined as follows.

Algorithm 2.1. Given X0 ∈ R
n×n and f : R

n×n → R this algorithm attempts to
minimize f(X).

Evaluate f0 = f(X0), ∇f0 = ∇f(X0)
k = 0; D0 = −∇f(X0)

while ∇fk 6= 0

find tk such that min
tk

‖Q(Xk + tkDk)‖2
F over all tk ∈ R(2.5)

Xk+1 = Xk + tkDk

Uk+1 = −∇fk+1 + βkDk

end

The constant βk in Algorithm 2.1 has two possible forms suggested by Fletcher and
Reeves [6] and Polak and Ribiére [16], respectively,

βFR
k =

‖∇fk+1‖
2
F

‖∇fk‖2
F

,(2.6)

βPR
k =

trace((∇fk+1 −∇fk)T∇fk+1)

‖∇fk|2F
.(2.7)

We now call the conjugate gradient method with βFR
k the CGFR method and the con-

jugate gradient method with βPR
k the CGPR method. Note that Algorithm 2.1 can be

implemented with exact line searches for a step length tk. Recalling the merit function for
Newton’s method with line searches and from Q(X + tD) = Q(X) + tDX(D) + t2AD2 we
have a quartic polynomial

pCG(t) = ‖Q(X + tD)‖2
F

= a4t
4 + a3t

3 + a2t
2 + a1t + a0,

where

a4 = ‖AD2‖2
F ,

a3 = trace(DX(D)T AD2 + (AD2)T DX(D)),

a2 = trace(QT AD2 + (AD2)T Q) + ‖DX(D)‖2
F ,

a1 = trace(QT DX(D) + DX(D)T Q),

a0 = ‖Q(X)‖2
F .

Since pCG(t) is quartic and the coefficient a4 is positive.
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Finally, note that exact line searches always satisfy the equation

(2.8) trace((∇fk+1)
TDk) = vec(∇fk+1)

T vec(Dk) = 0.

By applying vec to the equation (2.6) and premultiplying by vec(∇fk+1)
T we have

vec(∇fk+1)
T vec(Dk+1) = −‖∇fk+1‖

2
F + βkvec(∇fk+1)

T vec(Dk)

and hence by the exact line search the condition (2.8) we have vec(∇fk+1)
T vec(Dk+1) < 0,

which means that Dk+1 is a descent direction.
Now we consider operation counts for solving quadratic matrix equation using the

conjugate gradient method and compare with Newton’s method. Each step of Newton’s
method requires 102n3 flops using the generalized Schur decomposition and if Hessenberg-
triangular decomposition is used then only 52n3 flops. For exact line searches we need 5n3

flops more [10], [11]. Each conjugate gradient method substep requires the evaluation of
the gradient, ∇f , and the exact line searches. To evaluate the coefficients of pCG (AD,
AD2, ADX, (AX +B)D, DX(D)T AD2, QT AD2, QT DX(D)) 7 matrix multiplications are
required. Note that we need the multiplication of A and X for computing DX(D), which
appears in computing coefficients of pCG, a1, a2 and a4, but AX is already available from
the evaluation of ∇f . There are three symmetric matrices so for these matrix multiplica-
tions we need n3 flops each. Table 1 gives the operation counts for each substep of the
conjugate gradient method . We can see that exact line searches for the conjugate gradient
method requires 11n3 flops, which is relatively more expensive than for Newton’s method.
In some practical examples of quadratic matrix equation the coefficient matrices can be
large and sparse, for instance, for the damped mass-spring system A is diagonal and B
and C are symmetric tridiagonal. Suppose A, B and C are banded, however, only the
matrix A affects reducing flops with bandedness during multiplications. Let the matrix A
be banded with bandwidth ω. Then Table 2 shows the comparison of operation counts of
banded and dense matrices.

From Table 2 if ω � n (which is a reasonable assumption because the damped mass-
spring system gives only ω = 1), we can save

19n3 − 13n3

19n3
=

6n3

19n3
= 32%

than in dense case. So the conjugate gradient method with banded A can save

102n3 − 13n3

102n3
=

89n3

102n3
= 87%

than Schur algorithm of Newton’s method and

52n3 − 13n3

52n3
=

39n3

52n3
= 39%

than Hessenberg-Schur algorithm of Newton’s method. Although the bandedness is al-
most destroyed during computing ∇f and the coefficients of pCG for exact line searches,
the conjugate gradient method with banded coefficient matrix A saves operation counts
significantly comparing with Newton’s method.
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Table 1: Number of flops for using conjugate gradient method.

flops

∇f 8n3 flops

AD
2 4n3 flops

DX (D) = ADX + (AX + B)D 4n3 flops

Line search DX (D)T AD
2 + (AD

2)T DX (D) n3 flops

QT AD
2 + (AD

2)T Q n3 flops

QT DX (D) + DX (D)T Q n3 flops

Total 19n3 flops

Table 2: Comparison of operation counts for with banded and dense coefficient
matrices.

Dense Banded with bandwidth ω

∇f 8n3 4Dn2 + 4n3

Line searches 11n3 2Dn2 + 9n3

Total 19n3 6Dn2 + 13n3

3. Global convergence

Powell [18] established the global convergence for the CGFR method with the general
nonlinear equation, fG : R

n → R
n, assuming exact line search. Using similar argument

we can prove a global convergence result for the CGFR method with the function f(X) :
R

n×n → R in (2 1). We start with two results which play crucial roles in the proving of
global convergence.

Lemma 3.1 [7, Thm. 4.1.1], [12]. The descent directions Dk and ∇f in Algorithm 2.1
satisfy the following result:

vec(∇fk)T vec(Dk)

‖∇fk‖2
F

= −1.

Lemma 3.2 [15, Thm. 3.2], [12]. Consider Algorithm 2.1. Suppose that f is continuously
differentiable in an open set N containing the level set

(3.1) L := {X : f(X) ≤ f(X0)},

where X0 is starting matrix. Assume also that there is a constant Ω such that

‖∇2f(X)‖ ≤ Ω, for all X ∈ L.

Then

(3.2)
∞
∑

k=0

(

vec(∇fk)T vec(Dk)
)2

‖Dk‖2
F

< ∞.
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Inequality (3.2) in Lemma 3.2 can be rewritten by

∞
∑

k=0

cos2 θk‖∇fk‖
2
F ,

where

cos θk =
−vec(∇fk)T vec(Dk)

‖∇fk‖F ‖Dk‖F

and it is called the Zoutendijk condition [19].
We now remind that if the level set L in (3.1) is bounded and the gradient ∇f satisfies

a Lipschitz condition in an open set N , which is in some neighbourhood of L, that is, there
exists a constant L > 0 such that

(3.3) ‖∇f(X) −∇f(X̃)‖F ≤ L‖X − X̃‖F , for all X, X̃ ∈ N ,

then there exists a constant γ such that

(3.4) ‖∇f(X)‖F ≤ γ, for all X ∈ L.

Theorem 3.3 [18, Sec. 4], [12]. Suppose that all assumptions in Lemma 3.1. and 3.2.
hold and the level set L in (3.1) is bounded. Assume also that f is Lipschitz continuously
differentiable in some neighbourhood N of L and Algorithm is implemented by CGFR

method. Then

(3.5) lim
k→∞

inf ‖∇fk‖F = 0.

We note that Theorem applies to any general nonlinear matrix equation. However, it
may be too expensive to apply the exact line searches for the general nonlinear equation.
So, the global convergence for conjugate gradient method with inexact line searches can
be considered. The global convergence of the CGFR method with inexact line searches was
considered for the general nonlinear equation by Al-Baali [1] and we can apply this to the
general nonlinear matrix equation. First, we consider the strong Wolfe conditions, which
avoids vec(∇fk)T vec(Dk) > 0:

fk+1 ≤ fk + c1tk∇fT
k Dk,(3.6a)

|(vec(∇fk+1))
T vec(Dk)| ≤ c2|(vec(∇fk))T vec(Dk)|,(3.6b)

where 0 < c1 < c2 <
1

2
. Lemmas 3.1. and 3.2. can be rewritten as follows.

Lemma 3.4. Suppose that Algorithm is implemented with a step length tk that satisfies
the strong Wolfe conditions (3.6). Then the method generates a descent direction Dk that
satisfies the inequalities

−
1

1 − c2
≤

vec(∇fk)T vec(Dk)

‖∇fk‖2
F

≤
2c2 − 1

1 − c2
, for all k = 0, 1, · · · .
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Proof. See [1, Thm. 1] and [15, Lem. 5.6]. �

Lemma 3.5 [15, Thm. 3.2], [12]. Suppose that Algorithm is implemented with a step
length tk that satisfies the strong Wolfe conditions (3.6). Assume also that in some neigh-
bourhood N of L in (3.1) f satisfies the Lipschitz condition (3.3). Then

∞
∑

k=0

(

vec(∇fk)T vec(Dk)
)2

‖Dk‖2
F

< ∞.

Finally, from two lemmas we have the global convergence for the CGFR method with
inexact line searches.

Theorem 3.6. Suppose that all the assumptions of Lemma 3.4. and Lemma 3.5. hold,
and that Algorithm 2.1 is implemented by the CGFR method with a line search that satisfies
the strong Wolfe conditions (3.6). Then

lim
k→∞

inf ‖∇fk‖F = 0.

Proof. See [1, Thm. 2] and [15, Thm. 5.8]. �

The rate of convergence of conjugate gradient methods was consider by Crowder and
Wolfe [3] with exact line searches. They considered the two-dimensional quadratic function

fV (x) =
1

2
xT V x,

where V is an n × n symmetric positive definite matrix. They obtained the rate of con-
vergence with conjugate gradient method

fV (xk+1)/fV (xk) ≤ [(A− 1)/(A + 1)]2,

where A is the condition number of the matrix V . It shows that the convergence of the
conjugate gradient method is linear. For this reason it is desirable to consider precondi-
tioning for improving the ratio.

5. Using nleqn based on hybrid method

If we consider the function f in (2.1) as n2 nonlinear equations by defining r(x) =
vec(Q(X)) with n2 variables, which are xij for i, j = 1, 2, · · · , n, we can use minimiza-
tion methods based on the Gauss-Newton and the Levenberg-Marquardt methods. For
the Gauss-Newton method and the Levenberg-Marquardt method the direction dk can be
obtained by solving

JT
k Jkdk = −JT

k rk,

where Jk is the Jacobian of r(x)

J(x) =

(

δrj

δxi

)

for i, j = 1, · · ·n2.

A Matlab function, nleqn, for solving a system of m nonlinear equation in m variables
using the Gauss-Newton method and the Levenberg-Marquardt method was implemented
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by Reichelt and Shampine. The function nleqn is based on the Fortran program HYBRD1
of More, Garbow and Hillstrom which is originally based on the program CALFUN of
Powell [17, Chap. 7].

But these method needs to evaluate the Jacobian matrix which is n2×n2 and it means
that for large n this method is not very suitable.

6. Numerical Experiments and Conclusions

In this section we show and compare some experimental results the CGFR method,
CGPR method and a Matlab function for solving general nonlinear equation, nleqn. Our
experiments were done in Matlab.

Our default starting matrix is, as in [4],

Default X0 =

(

‖B‖F +
√

‖B‖2
F + 4‖A‖F ‖C‖F

2‖A‖F

)

I,

which is designed to have norm roughly of the same order of magnitude as a solvent. The
first plus sign avoids the starting value X0 = 0 and the second plus sign is to avoid the
possibility of a complex X0. Iterations for CGFR and CGPR methods are terminated when
the residual Q(Xk) is of the same order of magnitude as the rounding error in computing
it, namely when the relative residual ρ(Xk) satisfies

(6.1) ρ(Xk) =
‖fl(Q(Xk))‖F

‖A‖F ‖Xk‖2
F + ‖B‖F ‖Xk‖F + ‖C‖F

≤ nu,

where u = 2−53 ' 1.1 × 10−16 is unit roundoff. However, the iteration for nleqn is
terminated with tolerance

(6.2) ‖vec(Q(Xk))‖2 = ‖Q(Xk)‖F ≤ 1.0 × 10−6

and maximum function evaluations 200 × (n2 + 1).

The first example is

(6.3) Q1(X) = X2 + X +

[

−6 −5
0 −6

]

= 0,

from [4]. With starting matrices I2 and the default starting matrix Default X0 CGFR and

CGPR methods, and nleqn converge to the solvent, S1 =

[

2 1
0 2

]

. Figure 1 illustrates that

the CGPR method gives faster convergence than the CGFR method with both starting
matrices, I2 and Default X0.

We now consider the quadratic matrix equation

(6.4) Q2(X) = X2 +

[

−1 −1
1 −1

]

X +

[

0 1
−1 0

]

= 0,

which has two real solvents

(6.5) S1 = I2 =

[

1 0
0 1

]

, S2 =

[

0 −1
−1 0

]
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Figure 1: Convergence for problem (6.3) with CGFR and CGPR methods.

and infinitely many complex solvents, which have the forms

(6.6) S3 =

[

−z − i + 1 i(z − 1)
iz − 1 z

]

, S4 =

[

−z + i + 1 −i(z − 1)
−iz − 1 z

]

for all z ∈ C. Applying our methods with the default starting matrix Ddfault X0 and
X0 = 10jI, j = 1, 5, 10, gives the result in Tables 3. Note that nleqn does not converge
with X0 = 1010I.

Finally, a practical examples is considered. It is based on a quadratic equation prob-
lem from [8, Sec. 10.11], with numerical values modified as in [13, Sec. 5.3], modelling

Table 3: Number of iterations for convergence for problem (6.4) using minimization
methods.

X0 CGFR CGPR nleqn

DdfaultX0 17 7 9
10I 83 8 17

105I 34 8 48

1010I 39 10 -
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oscillations in an aeroplane wing:

A =





17.6 1.28 2.89
1.28 0.824 0.413
2.89 0.413 0.725



 , B =





7.66 2.45 2.1
0.23 1.04 0.223
0.6 0.756 0.658



 ,(6.7a)

C =





121 18.9 15.9
0 2.7 0.145

11.9 3.64 15.5



 .(6.7b)

There are no real solvents because the 6 eigenvalues come in 3 complex conjugate pairs and
any solvent must have 3 eigenvalues chosen from the 6. CGFR and CGPR methods need
over 1000 iterations with same starting matrices. All methods including nleqn converge
to the same solvent and the eigenvalues of the computed solvent are

-8.8483e-001 + 8.4415e+000i,

9.4722e-002 + 2.5229e+000i,

-9.1800e-001 + 1.7606e+000i.

Their conjugates are the eigenvalues of the quadratic equation problem.
We showed that the minimization can be used to solve the quadratic matrix equations.

Two different types of conjugate gradient method a which are Polak and Ribiére version
and Fletcher and Reeves version were introduced. Finally, finding a suitable preconditioner
without too much expense remains an open problem.
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