• Title/Summary/Keyword: local distance

Search Result 1,122, Processing Time 0.032 seconds

Nanomechanical Properties of Lithiated Silicon Nanowires Probed with Atomic Force Microscopy (원자힘 현미경으로 측정된 리튬화 실리콘 나노선의 나노기계적 성질)

  • Lee, Hyun-Soo;Shin, Weon-Ho;Kwon, Sang-Ku;Choi, Jang-Wook;Park, Jeong-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.395-402
    • /
    • 2011
  • The nanomechanical properties of fully lithiated and unlithiated silicon nanowire deposited on silicon substrate have been studied with atomic force microscopy. Silicon nanowires were synthesized using the vapor-liquid-solid process on stainless steel substrates using Au catalyst. Fully lithiated silicon nanowires were obtained by using the electrochemical method, followed by drop-casting on the silicon substrate. The roughness, derived from a line profile of the surface measured in contact mode atomic force microscopy, has a smaller value ($0.65{\pm}0.05$ nm) for lithiated silicon nanowire and a higher value ($1.72{\pm}0.16$ nm) for unlithiated silicon nanowire. Force spectroscopy was utilitzed to study the influence of lithiation on the tip-surface adhesion force. Lithiated silicon nanowire revealed a smaller value (~15 nN) than that of the Si nanowire substrate (~60 nN) by a factor of two, while the adhesion force of the silicon nanowire is similar to that of the silicon substrate. The elastic local spring constants obtained from the force-distance curve, also shows that the unlithiated silicon nanowire has a relatively smaller value (16.98 N/m) than lithiated silicon nanowire (66.30 N/m) due to the elastically soft amorphous structures. The frictional forces of lithiated and unlithiated silicon nanowire were obtained within the range of 0.5-4.0 Hz and 0.01-200 nN for velocity and load dependency, respectively. We explain the trend of adhesion and modulus in light of the materials properties of silicon and lithiated silicon. The results suggest a useful method for chemical identification of the lithiated region during the charging and discharging process.

Phosphorus Phases in the Surface Sediment of the South Sea (남해 표층 퇴적물에서의 인의 존재상)

  • SON Jaekyung;LEE Tongsup;YANG Han Soeb
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.5
    • /
    • pp.680-687
    • /
    • 1999
  • To understand the role of shelf sediment in phosphorus biogeochemical cycle, we carried out sequential sediment extraction (SEDEX) of P and porewater analysis on 14 core samples collected in the South Sea of Korea, SEDEX classified P-pools into 5 phases and results are grouped into two categories: reactive P (loosely sorbed-P and Fe bound-P) and refractory P (detrital inorganic-p, authigenic mineral-P and organic-P). Total P concentrations are decreased with sediment depth in all samples as a result of dissolution to porewater. Reactive P comprises about $20\~50\%$ of total P, and iron bound-P is the major form consisting $70\~80\%$ of reactive P-pool. Iron bound-P decreases sharply with depth. Depth profiles of dissolved P concentration in porewater show mirror image of iron bound-P, revealing the role of FeOOH as a regulator of reactive P supply to overlying water column. Authigenic mineral-P consists less than $5\%$ of total P, thus removal of reactive P by converting into refractory P seems inefficient in shelf sediment. This implies that continental shelf sediment sequesters P temporarily rather than permanently. Results show local variation. Nakdong estuary receiving large amount of terrigenous input shows the highest concentration of total P and reactive P. Here iron oxyhydroxides at the surface sediment control the water column flux of P from sediment. Although total P content at the surface is comparable (500$\~$600 ${\mu}g{\cdot}g^{-1}$) between the South Sea and East China Sea, the former contains more iron bound-P and less derital inorganic-P than the latter. Reasons for the difference seem due in part to particle texture, and to biological productivity which depends roughly on the distance from land.

  • PDF

Relationships of Korean Euphorbia L.(Euphorbiaceae) based on pollen morphology (화분 형태에 의한 한국산 대극속(Euphorbia L., Euphorbiaceae) 식물의 분류학적 유연관계)

  • Oh, Byoung-Un;Kim, Young-Su;Chung, Gyu-Young;Kim, Mi-Kyoung;Park, Ki-Ryong;Kim, Joo-Hwan;Park, Seon-Joo
    • Korean Journal of Plant Taxonomy
    • /
    • v.32 no.3
    • /
    • pp.339-362
    • /
    • 2002
  • Pollen morphology of 13 species of Korean Euphorbia was re-examined by means of LM and SEM. Taxonomic evaluation of palynological characters and relationships among taxa were also discussed based on the analysis of polar length, equatorial diameter, aperture size and exine thickness. Korean Euphorbia species were classified into three groups based on the mean size of polar length (P) and equatorial diameter (E) as follows:Group 1. sect. Tulocarpa and Tithymalus of subgenus Esula; $(P){\times}(E)=(54.88-67.17{\mu}m){\times}(44.30-64.75{\mu}m)$, Group 2. sect. Esula and Helioscpiae of subgenus Esula; $(P){\times}(E)=(39.98-47.24{\mu}m){\times}(36.07-38.83{\mu}m)$, Group 3. sect. Chamaesyce and Hypericifoliae of subgenus Chamaesyce; $(P){\times}(E)=(30.32-32.51{\mu}m){\times}(21.71-26.23{\mu}m)$. Various features of surface sculpturing were also grouped into 8 types by the characteristics of perporation size and distance of perporations as well as connection state of it. Pollen size and surface sculpturing were comparatively available in the levels of subgenus and section. Especially subgenus Chamaesyce was distinctly different from subgenus Esula by having compactly distributed perporations on exine surface as well as its small size of pollen grains. Because of the great variations in pollen size and the occurrence of various types of surface sculpturing according to the local poulations of each species, it was evaluated that they were unsuitable in classifying each species of Euphorbia. But such cases, that is, E. hylonoma being more familiar with E. ebracteolata than E. Pallasii, and E. pekinensis and E. fauriei as well as E. pallasii being strongly related with each other based on the similarity of surface sculpturing, reflected its usefulness in the classification of some Euphorbia species.

Geographical Variation of the Oriental Fruit Fly, Bactrocera dorsalis, Occurring in Taiwan (오리엔탈과실파리 유전변이 - 대만 지역 집단변이)

  • Kim, Yonggyun;Kim, Hyoil;Mollah, Md. Mahi Imam;Al Baki, Md. Abdullah
    • Korean journal of applied entomology
    • /
    • v.58 no.2
    • /
    • pp.133-142
    • /
    • 2019
  • This study analyzed genetic variation of the Oriental fruit fly (OFF), Bactrocera dorsalis, which is designated to be a quarantine insect pest in Korea. OFF samples endemic to Taiwan were collected at three different locations (Taipei, Taichung, and Kaohsiung) for three days from July 30 to August 1 in 2018 and assessed in their age and mitochondrial DNA sequence variations. In these places, 1,085 OFF males were collected using methyl eugenol lure while 30 males of Zeugodacus cucurbitae and one male of Bactrocera tau were collected using Cuelure. A protein diet lure attracted 6 flies including one OFF and 5 flies of Z. cucurbitae. Male heads of OFF contained pterin, which increased in contents with age from 32 to $59{\mu}g/head$. There was a local variation in pterin amounts in OFF heads, in which Kaohsiung population had lower amounts of pterin than Taipei and Taichung populations. Genetic distance among these three populations were measured by random amplified polymorphic DNA and showed that Taipei population was separated from Taichung/Kaohsiung cluster. Genetic variation was also analyzed in sequence variations in cytochrome oxidase I (CO-I) and NADH dehydrogenase I (ND-I). There was 7.8% variation in CO-I sequence (360 residues) and 6.6% variation in ND-I sequence (213 residues). These polymorphic sites are proposed to be used to develop SNP (single nucleotide polymorphism) markers characteristic to Taiwan OFF populations.

Effect of Composition on Isotropic Chemical Shift of Na Silicate and Aluminosilicate Glasses Using Solid State NMR (고상 핵자기공명 분광분석을 이용한 비정질 Na 규산염 및 알루미노규산염 내 조성에 따른 등방성 화학적 차폐 변화 규명)

  • Park, Sun Young;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.41-49
    • /
    • 2019
  • Probing the Na environments in Na silicate and aluminosilicate glasses is essential to the macroscopic properties of melts in the Earth. In particular, exploring the atomic structure of Na silicate and aluminosilicate glasses reveals Na-O distance, which plays an important role in transport properties of melts. Here we report the local environment around Na using $^{23}Na$ magic angle spinning (MAS) NMR. We also obtain $^{23}Na$ isotropic chemical shift (${\delta}_{iso}$) of Na silicate and aluminosilicate glasses with varying composition using Dmfit program. The Q mas 1/2 model simulates the experimental results with three simulated peaks while the CzSimple model simulates with one peak. The ${\delta}_{iso}$ decreases with increasing $SiO_2$ content in Na silicate and aluminosilicate glasses. The ${\delta}_{iso}$ increases with increasing $Na_2O$ content in Na-Ca silicate and Na aluminosilicate glasses when the $SiO_2$ content is fixed. Considering the ${\delta}_{iso}$ of Na aluminosilicate glasses available in the previous studies, together with the current simulation results, we confirm that the ${\delta}_{iso}$ has positive correlation with Al / (Al + Si). Those experimental results were reproduced better using Q mas 1/2 model. The disorder of Na in Na silicate and aluminosilicate glasses can be revealed through the simulation of 1D $^{23}Na$ MAS NMR spectra using Dmfit program in a short time.

Smart Electric Mobility Operating System Integrated with Off-Grid Solar Power Plants in Tanzania: Vision and Trial Run (탄자니아의 태양광 발전소와 통합된 전기 모빌리티 운영 시스템 : 비전과 시범운행)

  • Rhee, Hyop-Seung;Im, Hyuck-Soon;Manongi, Frank Andrew;Shin, Young-In;Song, Ho-Won;Jung, Woo-Kyun;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.127-135
    • /
    • 2021
  • To respond to the threat of global warming, countries around the world are promoting the spread of renewable energy and reduction of carbon emissions. In accordance with the United Nation's Sustainable Development Goal to combat climate change and its impacts, global automakers are pushing for a full transition to electric vehicles within the next 10 years. Electric vehicles can be a useful means for reducing carbon emissions, but in order to reduce carbon generated in the stage of producing electricity for charging, a power generation system using eco-friendly renewable energy is required. In this study, we propose a smart electric mobility operating system integrated with off-grid solar power plants established in Tanzania, Africa. By applying smart monitoring and communication functions based on Arduino-based computing devices, information such as remaining battery capacity, battery status, location, speed, altitude, and road conditions of an electric vehicle or electric motorcycle is monitored. In addition, we present a scenario that communicates with the surrounding independent solar power plant infrastructure to predict the drivable distance and optimize the charging schedule and route to the destination. The feasibility of the proposed system was verified through test runs of electric motorcycles. In considering local environmental characteristics in Tanzania for the operation of the electric mobility system, factors such as eco-friendliness, economic feasibility, ease of operation, and compatibility should be weighed. The smart electric mobility operating system proposed in this study can be an important basis for implementing the SDGs' climate change response.

Operation Measures of Sea Fog Observation Network for Inshore Route Marine Traffic Safety (연안항로 해상교통안전을 위한 해무관측망 운영방안에 관한 연구)

  • Joo-Young Lee;Kuk-Jin Kim;Yeong-Tae Son
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.188-196
    • /
    • 2023
  • Among marine accidents caused by bad weather, visibility restrictions caused by sea fog occurrence cause accidents such as ship strand and ship bottom damage, and at the same time involve casualties caused by accidents, which continue to occur every year. In addition, low visibility at sea is emerging as a social problem such as causing considerable inconvenience to islanders in using transportation as passenger ships are collectively delayed and controlled even if there are local differences between regions. Moreover, such measures are becoming more problematic as they cannot objectively quantify them due to regional deviations or different criteria for judging observations from person to person. Currently, the VTS of each port controls the operation of the ship if the visibility distance is less than 1km, and in this case, there is a limit to the evaluation of objective data collection to the extent that the visibility of sea fog depends on the visibility meter or visual observation. The government is building a marine weather signal sign and sea fog observation networks for sea fog detection and prediction as part of solving these obstacles to marine traffic safety, but the system for observing locally occurring sea fog is in a very insufficient practical situation. Accordingly, this paper examines domestic and foreign policy trends to solve social problems caused by low visibility at sea and provides basic data on the need for government support to ensure maritime traffic safety due to sea fog by factually investigating and analyzing social problems. Also, this aims to establish a more stable maritime traffic operation system by blocking marine safety risks that may ultimately arise from sea fog in advance.

Performance Evaluation of Monitoring System for Sargassum horneri Using GOCI-II: Focusing on the Results of Removing False Detection in the Yellow Sea and East China Sea (GOCI-II 기반 괭생이모자반 모니터링 시스템 성능 평가: 황해 및 동중국해 해역 오탐지 제거 결과를 중심으로)

  • Han-bit Lee;Ju-Eun Kim;Moon-Seon Kim;Dong-Su Kim;Seung-Hwan Min;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1615-1633
    • /
    • 2023
  • Sargassum horneri is one of the floating algae in the sea, which breeds in large quantities in the Yellow Sea and East China Sea and then flows into the coast of Republic of Korea, causing various problems such as destroying the environment and damaging fish farms. In order to effectively prevent damage and preserve the coastal environment, the development of Sargassum horneri detection algorithms using satellite-based remote sensing technology has been actively developed. However, incorrect detection information causes an increase in the moving distance of ships collecting Sargassum horneri and confusion in the response of related local governments or institutions,so it is very important to minimize false detections when producing Sargassum horneri spatial information. This study applied technology to automatically remove false detection results using the GOCI-II-based Sargassum horneri detection algorithm of the National Ocean Satellite Center (NOSC) of the Korea Hydrographic and Oceanography Agency (KHOA). Based on the results of analyzing the causes of major false detection results, it includes a process of removing linear and sporadic false detections and green algae that occurs in large quantities along the coast of China in spring and summer by considering them as false detections. The technology to automatically remove false detection was applied to the dates when Sargassum horneri occurred from February 24 to June 25, 2022. Visual assessment results were generated using mid-resolution satellite images, qualitative and quantitative evaluations were performed. Linear false detection results were completely removed, and most of the sporadic and green algae false detection results that affected the distribution were removed. Even after the automatic false detection removal process, it was possible to confirm the distribution area of Sargassum horneri compared to the visual assessment results, and the accuracy and precision calculated using the binary classification model averaged 97.73% and 95.4%, respectively. Recall value was very low at 29.03%, which is presumed to be due to the effect of Sargassum horneri movement due to the observation time discrepancy between GOCI-II and mid-resolution satellite images, differences in spatial resolution, location deviation by orthocorrection, and cloud masking. The results of this study's removal of false detections of Sargassum horneri can determine the spatial distribution status in near real-time, but there are limitations in accurately estimating biomass. Therefore, continuous research on upgrading the Sargassum horneri monitoring system must be conducted to use it as data for establishing future Sargassum horneri response plans.

Indonesia, Malaysia Airline's aircraft accidents and the Indonesian, Korean, Chinese Aviation Law and the 1999 Montreal Convention

  • Kim, Doo-Hwan
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.30 no.2
    • /
    • pp.37-81
    • /
    • 2015
  • AirAsia QZ8501 Jet departed from Juanda International Airport in, Surabaya, Indonesia at 05:35 on Dec. 28, 2014 and was scheduled to arrive at Changi International Airport in Singapore at 08:30 the same day. The aircraft, an Airbus A320-200 crashed into the Java Sea on Dec. 28, 2014 carrying 162 passengers and crew off the coast of Indonesia's second largest city Surabaya on its way to Singapore. Indonesia's AirAsia jet carrying 162 people lost contact with ground control on Dec. 28, 2014. The aircraft's debris was found about 66 miles from the plane's last detected position. The 155 passengers and seven crew members aboard Flight QZ 8501, which vanished from radar 42 minutes after having departed Indonesia's second largest city of Surabaya bound for Singapore early Dec. 28, 2014. AirAsia QZ8501 had on board 137 adult passengers, 17 children and one infant, along with two pilots and five crew members in the aircraft, a majority of them Indonesian nationals. On board Flight QZ8501 were 155 Indonesian, three South Koreans, and one person each from Singapore, Malaysia and the UK. The Malaysia Airlines Flight 370 departed from Kuala Lumpur International Airport on March 8, 2014 at 00:41 local time and was scheduled to land at Beijing's Capital International Airport at 06:30 local time. Malaysia Airlines also marketed as China Southern Airlines Flight 748 (CZ748) through a code-share agreement, was a scheduled international passenger flight that disappeared on 8 March 2014 en route from Kuala Lumpur International Airport to Beijing's Capital International Airport (a distance of 2,743 miles: 4,414 km). The aircraft, a Boeing 777-200ER, last made contact with air traffic control less than an hour after takeoff. Operated by Malaysia Airlines (MAS), the aircraft carried 12 crew members and 227 passengers from 15 nations. There were 227 passengers, including 153 Chinese and 38 Malaysians, according to records. Nearly two-thirds of the passengers on Flight 370 were from China. On April 5, 2014 what could be the wreckage of the ill-fated Malaysia Airlines was found. What appeared to be the remnants of flight MH370 have been spotted drifting in a remote section of the Indian Ocean. Compensation for loss of life is vastly different between US. passengers and non-U.S. passengers. "If the claim is brought in the US. court, it's of significantly more value than if it's brought into any other court." Some victims and survivors of the Indonesian and Malaysia airline's air crash case would like to sue the lawsuit to the United States court in order to receive a larger compensation package for damage caused by an accident that occurred in the sea of Java sea and the Indian ocean and rather than taking it to the Indonesian or Malaysian court. Though each victim and survivor of the Indonesian and Malaysia airline's air crash case will receive an unconditional 113,100 Unit of Account (SDR) as an amount of compensation for damage from Indonesia's AirAsia and Malaysia Airlines in accordance with Article 21, 1 (absolute, strict, no-fault liability system) of the 1999 Montreal Convention. But if Indonesia AirAsia airlines and Malaysia Airlines cannot prove as to the following two points without fault based on Article 21, 2 (presumed faulty system) of the 1999 Montreal Convention, AirAsia of Indonesiaand Malaysia Airlines will be burdened the unlimited liability to the each victim and survivor of the Indonesian and Malaysia airline's air crash case such as (1) such damage was not due to the negligence or other wrongful act or omission of the air carrier or its servants or agents, or (2) such damage was solely due to the negligence or other wrongful act or omission of a third party. In this researcher's view for the aforementioned reasons, and under the laws of China, Indonesia, Malaysia and Korea the Chinese, Indonesian, Malaysia and Korean, some victims and survivors of the crash of the two flights are entitled to receive possibly from more than 113,100 SDR to 5 million US$ from the two airlines or from the Aviation Insurance Company based on decision of the American court. It could also be argued that it is reasonable and necessary to revise the clause referring to bodily injury to a clause mentioning personal injury based on Article 17 of the 1999 Montreal Convention so as to be included the mental injury and condolence in the near future.

A Deep Learning Based Approach to Recognizing Accompanying Status of Smartphone Users Using Multimodal Data (스마트폰 다종 데이터를 활용한 딥러닝 기반의 사용자 동행 상태 인식)

  • Kim, Kilho;Choi, Sangwoo;Chae, Moon-jung;Park, Heewoong;Lee, Jaehong;Park, Jonghun
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.163-177
    • /
    • 2019
  • As smartphones are getting widely used, human activity recognition (HAR) tasks for recognizing personal activities of smartphone users with multimodal data have been actively studied recently. The research area is expanding from the recognition of the simple body movement of an individual user to the recognition of low-level behavior and high-level behavior. However, HAR tasks for recognizing interaction behavior with other people, such as whether the user is accompanying or communicating with someone else, have gotten less attention so far. And previous research for recognizing interaction behavior has usually depended on audio, Bluetooth, and Wi-Fi sensors, which are vulnerable to privacy issues and require much time to collect enough data. Whereas physical sensors including accelerometer, magnetic field and gyroscope sensors are less vulnerable to privacy issues and can collect a large amount of data within a short time. In this paper, a method for detecting accompanying status based on deep learning model by only using multimodal physical sensor data, such as an accelerometer, magnetic field and gyroscope, was proposed. The accompanying status was defined as a redefinition of a part of the user interaction behavior, including whether the user is accompanying with an acquaintance at a close distance and the user is actively communicating with the acquaintance. A framework based on convolutional neural networks (CNN) and long short-term memory (LSTM) recurrent networks for classifying accompanying and conversation was proposed. First, a data preprocessing method which consists of time synchronization of multimodal data from different physical sensors, data normalization and sequence data generation was introduced. We applied the nearest interpolation to synchronize the time of collected data from different sensors. Normalization was performed for each x, y, z axis value of the sensor data, and the sequence data was generated according to the sliding window method. Then, the sequence data became the input for CNN, where feature maps representing local dependencies of the original sequence are extracted. The CNN consisted of 3 convolutional layers and did not have a pooling layer to maintain the temporal information of the sequence data. Next, LSTM recurrent networks received the feature maps, learned long-term dependencies from them and extracted features. The LSTM recurrent networks consisted of two layers, each with 128 cells. Finally, the extracted features were used for classification by softmax classifier. The loss function of the model was cross entropy function and the weights of the model were randomly initialized on a normal distribution with an average of 0 and a standard deviation of 0.1. The model was trained using adaptive moment estimation (ADAM) optimization algorithm and the mini batch size was set to 128. We applied dropout to input values of the LSTM recurrent networks to prevent overfitting. The initial learning rate was set to 0.001, and it decreased exponentially by 0.99 at the end of each epoch training. An Android smartphone application was developed and released to collect data. We collected smartphone data for a total of 18 subjects. Using the data, the model classified accompanying and conversation by 98.74% and 98.83% accuracy each. Both the F1 score and accuracy of the model were higher than the F1 score and accuracy of the majority vote classifier, support vector machine, and deep recurrent neural network. In the future research, we will focus on more rigorous multimodal sensor data synchronization methods that minimize the time stamp differences. In addition, we will further study transfer learning method that enables transfer of trained models tailored to the training data to the evaluation data that follows a different distribution. It is expected that a model capable of exhibiting robust recognition performance against changes in data that is not considered in the model learning stage will be obtained.