DOI QR코드

DOI QR Code

Smart Electric Mobility Operating System Integrated with Off-Grid Solar Power Plants in Tanzania: Vision and Trial Run

탄자니아의 태양광 발전소와 통합된 전기 모빌리티 운영 시스템 : 비전과 시범운행

  • Rhee, Hyop-Seung (Innovative Technology and Energy Center(iTEC)) ;
  • Im, Hyuck-Soon (Department of Mechanical Engineering, Seoul National University) ;
  • Manongi, Frank Andrew (Department of Mechanical Engineering, Seoul National University) ;
  • Shin, Young-In (Institute of Advanced Machines and Design, Seoul National University) ;
  • Song, Ho-Won (Institute of Advanced Machines and Design, Seoul National University) ;
  • Jung, Woo-Kyun (Soft Robotics Research Center) ;
  • Ahn, Sung-Hoon (Department of Mechanical Engineering, Seoul National University)
  • 이협승 (한국-탄자니아 에너지-산업연계 적정기술거점센터(iTEC)) ;
  • 임혁순 (서울대학교 기계공학부) ;
  • 프랭크 앤드류 마농기 (서울대학교 기계공학부) ;
  • 신영인 (서울대학교 정밀기계설계공동연구소) ;
  • 송호원 (서울대학교 정밀기계설계공동연구소) ;
  • 정우균 (인간중심소프트로봇기술연구센터) ;
  • 안성훈 (서울대학교 기계공학부)
  • Received : 2021.09.30
  • Accepted : 2021.10.18
  • Published : 2021.11.20

Abstract

To respond to the threat of global warming, countries around the world are promoting the spread of renewable energy and reduction of carbon emissions. In accordance with the United Nation's Sustainable Development Goal to combat climate change and its impacts, global automakers are pushing for a full transition to electric vehicles within the next 10 years. Electric vehicles can be a useful means for reducing carbon emissions, but in order to reduce carbon generated in the stage of producing electricity for charging, a power generation system using eco-friendly renewable energy is required. In this study, we propose a smart electric mobility operating system integrated with off-grid solar power plants established in Tanzania, Africa. By applying smart monitoring and communication functions based on Arduino-based computing devices, information such as remaining battery capacity, battery status, location, speed, altitude, and road conditions of an electric vehicle or electric motorcycle is monitored. In addition, we present a scenario that communicates with the surrounding independent solar power plant infrastructure to predict the drivable distance and optimize the charging schedule and route to the destination. The feasibility of the proposed system was verified through test runs of electric motorcycles. In considering local environmental characteristics in Tanzania for the operation of the electric mobility system, factors such as eco-friendliness, economic feasibility, ease of operation, and compatibility should be weighed. The smart electric mobility operating system proposed in this study can be an important basis for implementing the SDGs' climate change response.

전 세계적인 지구온난화의 위협에 대응하고자 세계 각국은 신재생 에너지의 확산, 탄소 배출 감소 등을 추진하고 있다. 또한, UN의 SDGs에도 포함된 기후변화에 맞서기 위한 노력으로 글로벌 자동차 제조사들은 향후 10년내에 전기 자동차로의 전면 전환을 추진하고 있다. 전기자동차는 탄소 배출 감소를 위한 유용한 수단이 될 수 있으나, 충전용 전기를 생산하는 단계에서 발생하는 탄소의 저감을 위해서는 친환경 신재생 에너지를 이용한 발전시스템이 요구된다. 본 연구에서는 아프리카 탄자니아에 설립된 태양광 발전소와 통합된 스마트 전기 모빌리티 운영 시스템에 대한 비전을 제안한다. 아두이노 컴퓨팅 장치를 기반으로 하는 스마트 모니터링 및 통신 기능을 적용하여 전기자동차 또는 전기 오토바이의 배터리 잔존용량, 배터리 상태, 위치, 속도, 고도, 도로 상태 등의 정보를 모니터링한다. 또한, 주변의 독립형 태양광 발전소 인프라와 통신하여 주행가능거리를 예측하고 충전 스케쥴 및 목적지까지의 경로 최적화를 수행하는 시나리오를 제시한다. 제안된 시스템의 구현 가능성은 전기 오토바이의 시험운행을 통해 검증되었다. 탄자니아에서 운영될 전기 모빌리티 시스템은 현지의 환경과 특성을 고려하여 친환경성, 경제성, 운용 용이성, 호환성 등의 요소가 고려되어야 한다. 본 연구에서 제안하는 스마트 전기 모빌리티 운영 시스템은 SDGs의 이행을 위한 중요한 기반이 될 수 있을 것이다.

Keywords

Acknowledgement

이 논문은 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 국제협력 선도대학 육성·지원 사업(과제번호: 2020H1A7A2A02000043)의 연구 결과이며, 국제 협력 프로그램을 수행할 수 있도록 지원해 준 SNU 10-10 프로젝트에 감사를 표합니다.

References

  1. Ahmadian, A., Sedghi, M., Elkamel, A., Fowler, M., and Golkar, M. A. (2018). Plug-in electric vehicle batteries degradation modeling for smart grid studies: Review, assessment and conceptual framework, Renewable and Sustainable Energy Reviews, 81, pp. 2609-2624. https://doi.org/10.1016/j.rser.2017.06.067
  2. Bimenyimana, S., Wang, C., Nduwamungu, A., Asemota, G. N. O., Utetiwabo, W., Ho, C., Niyonteze, J. D. D., Hagumimana, N., Habineza, T., Bashir W., Mesa, C. K., and Mo, Y. (2021). Integration of Microgrids and Electric Vehicle Technologies in the National Grid as the Key Enabler to the Sustainable Development for Rwanda. International Journal of Photoenergy, pp. 1-12.
  3. Bishop, T., Barber, C., Mwaipopo, H., Rettie, N., KrasnoluckaHickman, A., Divall, D., and Porter, G. (2018). Enhancing understanding on safe motorcycle and three-wheeler use for rural transport, Inception Report, Amend and Transaid, http://www.research4cap.org (accessed Sept, 2021).
  4. Bokopane, L., Kusakana, K., and Vermaak, H. J. (2014). Hybrid System Configurations and Charging Strategies for Isolated Electric Tuk-Tuk Charging Station in South Africa, Journal of Electrical, Robotics, Electronics and Communications Engineering, 8(11), 1395-1400.
  5. Chang, W.-Y. (2013). The State of Charge Estimating Methods for Battery: A Review, ISRN Applied Mathematics, 2013(1), pp. 1-7. https://doi.org/10.1155/2013/953792
  6. Chokkalingam, B., Padmanaban, S., Siano, P., Krishnamoorthy, R., and Selvaraj, R. (2017). Real-time forecasting of EV charging station scheduling for smart energy systems, Energies, 10(3), pp. 377. https://doi.org/10.3390/en10030377
  7. CO2 Emissions from Transport (% of Total Fuel Combustion) - Tanzania, The World Bank, https://data.worldbank.org/indicator/EN.CO2.TRAN.ZS?end=2014&locations=TZ&start=2014&view=bar (accessed Sept, 2021).
  8. Ekren, O., Canbaz, C. H., and Guvel, C. B. (2021). Sizing of a solar-wind hybrid electric vehicle charging station by using HOMER software, Journal of Cleaner Production, 279, 123615. pp. 1-13.
  9. Erick, A. O., and Folly, K. A. (2020). Power Flow Management in Multi-Source Electric Vehicle Charging Station, IFAC-PapersOnLine, 53(2), pp. 12590-12595. https://doi.org/10.1016/j.ifacol.2020.12.1824
  10. Fathabadi, H. (2017). Novel solar powered electric vehicle charging station with the capability of vehicle-to-grid, Solar Energy, 142, pp. 136-143. https://doi.org/10.1016/j.solener.2016.11.037
  11. Frank, A. M., and Ahn, S. H. (2021). Energy systems Integration: Optimizing infrastructure of Africa's offgrid power plants to adapt Electric Vehicle smart charging, Proceedings of the International Conference on Energy, Aquatech and Sustainability 2021 (ICEAS 2021), Academic Society for Appropriate Technology, p.6.
  12. Gandoman, F. H., Ahmadi, A., Van den Bossche, P., Van Mierlo, J., Omar, N., Nezhad, A. E., Mavalizadeh, H., and Mayet, C. (2019). Status and future perspectives of reliability assessment for electric vehicles, Reliability Engineering & System Safety, 183, pp. 1-16. https://doi.org/10.1016/j.ress.2018.11.013
  13. Garidzirai, R. (2020). Time Series Analysis of Carbon Dioxide Emission, Population, Carbon Tax and Energy use in South Africa, International Journal of Energy Economics and Policy, 10(5), 353. https://doi.org/10.32479/ijeep.9618
  14. Greenhouse Gases Equivalencies Calculator - Calculations and References. Environmental Protection Agency, https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references (accessed Sept. 2021).
  15. Hu, X., Jiang, J., Egardt, B., and Cao, D. (2015). Advanced power-source integration in hybrid electric vehicles: Multicriteria optimization approach, IEEE Transactions on Industrial Electronics, 62(12), pp. 7847-7858. https://doi.org/10.1109/TIE.2015.2463770
  16. International Trade Administration: Tanzania - Country Commercial Guide (Energy), https://www.trade.gov/country-commercial-guides/tanzania-energy (accessed Sept, 2021).
  17. International Trade Administration: Tanzania - Country Commercial Guide (Transportation Infrastructure), https://www.trade.gov/country-commercial-guides/tanzania-transportation-infrastructure (accessed Sept, 2021).
  18. Khan, S., Ahmad, A., Ahmad, F., Shafaati Shemami, M., Saad Alam, M., and Khateeb, S. (2018). A comprehensive review on solar powered electric vehicle charging system, Smart Science, 6(1), pp. 54-79. https://doi.org/10.1080/23080477.2017.1419054
  19. Kim, G., and Sin, O. (2014). 전기이륜차 기술동향, 전기의 세계, 16(11), pp. 32-40.
  20. Mueller, O. M., and Mueller, E. K. (2014). Off-grid, low-cost, electrical sun-car system for developing countries, Proceeding of the IEEE Global Humanitarian Technology Conference, IEEE, California, October 19-23, pp. 14-17.
  21. Nguyen, H., Zhang, C., and Mahmud, M. A. (2014). Smart charging and discharging of electric vehicles to support grid with high penetration of renewable energy, IFAC Proceedings Volumes, 47(3), pp. 8604-8609. https://doi.org/10.3182/20140824-6-ZA-1003.02109
  22. Rajper, S. Z., and Albrecht, J. (2020). Prospects of electric vehicles in the developing countries: a literature review, Sustainability, 12(5), pp. 1-19.
  23. Renewables 2020 - Analysis - IEA. (2020). International Energy Agency, https://www.iea.org/reports/renewables-2020 (accessed Sept. 2021).
  24. Schreyer, F., Luderer, G., Rodrigues, R., Pietzcker, R. C., Baumstark, L., Sugiyama, M., Brecha, R. J., and Ueckerdt, F. (2020). Common but differentiated leadership: strategies and challenges for carbon neutrality by 2050 across industrialized economies, Environmental Research Letters, 15(11), 114016. https://doi.org/10.1088/1748-9326/abb852
  25. Sun, C., Sun, F., Hu, X., Hedrick, J. K., and Moura, S. (2015, July). Integrating traffic velocity data into predictive energy management of plug-in hybrid electric vehicles, Proceeding of the 2015 American Control Conference, IEEE, Illinois, July 1-3, pp. 3267-3272.
  26. Tanzania Electric Supply Company Limited. (2015). Annual report: for the 18-month period ended 30th June 2015, pp. 1-12.
  27. The united republic of Tanzania. Ministry of energy and minerals. (2015). Electricity Supply Industry Reform Roadmap, pp. 11-15.
  28. The united republic of Tanzania. planning commission. (1999). The Tanzania development vision 2025, pp. 3-7.
  29. Thellufsen, J. Z., Lund, H., Sorknaes, P., Ostergaard, P. A., Chang, M., Drysdale, D., Nielson, S., Djorup, S. R., and Sperling, K. (2020). Smart energy cities in a 100% renewable energy context, Renewable and Sustainable Energy Reviews, 129, 109922.q
  30. United Nations Road Safety Collaboration group (UNRSC). (2020). The ten step plan for safer road infrastructure, www.gtkp.com (accessed Sept. 2021)
  31. Urban Electric Mobility Initiative (UEMI), UEMI in Tanzania, http://www.uemi.net/dar-es-salaam---tanzania.html (accessed Sept, 2021).
  32. World meteorological organization (2020). State of the Global Climate 2020: Provisional report, https://public.wmo.int/en/our-mandate/climate/wmo-statement-state-of-global-climate (accessed Sept, 2021).
  33. Yang, Z., Li, K., Foley, A., and Zhang, C. (2014). Optimal scheduling methods to integrate plug-in electric vehicles with the power system: a review, IFAC Proceedings Volumes, 47(3), pp. 8594-8603. https://doi.org/10.3182/20140824-6-ZA-1003.01804