• Title/Summary/Keyword: load-balanced

Search Result 259, Processing Time 0.022 seconds

A Study about Implementation Method of Multi-Interface Multi-Channel 2.4GHz Active RFID Reader Protocol (다중인터페이스 다중채널 2.4GHz 능동형 RFID 리더 프로토콜 구현방법에 관한 연구)

  • Kim, Dong-Hyun;Lee, Chae-Suk;Kim, Jong-Doek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.1005-1014
    • /
    • 2010
  • When reader collect tags, we found that they tend to get together to specific interface in Multi-Interface Multi-Channel 2.4GHz Active RFID system. To solve this problem, we designed the LP-Combind and AP-Balanced protocol for load distribution between interfaces, then verified its superiority of the performance through the simulation. There are three problems to implement designed protocols in hardware of firmware-level. first, tag selects randomly the channel of reader and reader need the method which can change the channel of tags. second, reader has the synchronization problem between reader and tag. third, reader has problem that MCU of reader have to operate simultaneously dual interface. To slove this problems, we designed the message and implemented method for tag channel change and the protocol in order to adjust synchronization between reader and tag, Therefore, we compared and analyzed the performance of protocols by experiment. If LP windows size is same, the performance of LP-Combined protocol and AP-Balanced protocol which lower collision probability by its load distribution is more outstanding than single interface protocol performance.

An efficient Load Balanced Cost Calculation Scheme for QoS Routing (QoS 라우팅을 위한 부하균등 비용산정 방식)

  • Hong, Jong-Joon;Kim, Seung-Hoon;Lee, Kyoon-Ha
    • The KIPS Transactions:PartC
    • /
    • v.9C no.1
    • /
    • pp.135-140
    • /
    • 2002
  • An efficient QoS routing scheme needs to find a path that satisfies a given QoS requirements while consuming as few resources as Possible. In this paper, we propose two schemes of calculating resources'costs one for on-demand and one for precomputation QoS routing schemes. These schemes are effective in respect to the global network utilization and the balanced use of network resources. We also propose a QoS routing scheme for transit and Intra traffic in a large scale of domain-based network. For a domain in the network, the routing scheme first precomputes K multip1e paths between all pairs of ingress and ogress border routers while considering balancing of the expected load. We, therefore, expect that the paths are bettor than any other paths in respect to reserving the network resources on Paths. The routine: scheme combines inter and intra domain routings seamlessly and uses the same cost calculation scheme. cote that our cost calculation schemes for both kinds of traffic could be used in existing QoS routing protocols without and modification in small and large scale of networks.

Distributing Network Loads in Tree-based Content Distribution System

  • Han, Seung Chul;Chung, Sungwook;Lee, Kwang-Sik;Park, Hyunmin;Shin, Minho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.1
    • /
    • pp.22-37
    • /
    • 2013
  • Content distribution to a large number of concurrent clients stresses both server and network. While the server limitation can be circumvented by deploying server clusters, the network limitation is far less easy to cope with, due to the difficulty in measuring and balancing network load. In this paper, we use two useful network load metrics, the worst link stress (WLS) and the degree of interference (DOI), and formulate the problem as partitioning the clients into disjoint subsets subject to the server capacity constraint so that the WLS and the DOI are reduced for each session and also well balanced across the sessions. We present a network load-aware partition algorithm, which is practicable and effective in achieving the design goals. Through experiments on PlanetLab, we show that the proposed scheme has the remarkable advantages over existing schemes in reducing and balancing the network load. We expect the algorithm and performance metrics can be easily applied to various Internet applications, such as media streaming, multicast group member selection.

Autonomous Load Balancing Method in a Wireless Network Inspired by Synchronization Phenomena in the Nature (무선 네트워크에서 자연계 동기화 현상을 모방한 자율적 부하 균형 기법)

  • Park, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2230-2237
    • /
    • 2015
  • Inspired by the synchronization phenomena observed in the Nature, we propose an autonomous load balancing method for a wireless network. We model the load balancing problem of cells providing wireless access services as a synchronization problem in the Nature and design an algorithm for each cell to distribute loads in a self-determining way based on the load differences among its neighbor cells. Through simulations, we verify the feasibility of the proposed method in that cell loads can be balanced efficiently eve if cells make decision autonomously using their local information.

Interference Cancellation and Load Balancing in Heterogeneous Cellular Networks (이기종 셀룰러 네트워크에서 간섭 제거와 로드 밸런싱)

  • Lee, Kyoung-Jae;Jo, Han-Shin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.45-49
    • /
    • 2014
  • In this paper, the performance of the interference cancellation using multiple receive antennas is evaluated for heterogeneous cellular systems when user association and load balancing problems are optimized for cell edge users. The simulation results show that the interference cancellation method remarkably improves the rate performance of load-balanced cells.

A Voltage Regulation System for Independent Load Operation of Stand Alone Self-Excited Induction Generators

  • Kesler, Selami;Doser, Tayyip L.
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1869-1883
    • /
    • 2016
  • In recent years, some converter structures and analyzing methods for the voltage regulation of stand-alone self-excited induction generators (SEIGs) have been introduced. However, all of them are concerned with the three-phase voltage control of three-phase SEIGs or the single-phase voltage control of single-phase SEIGs for the operation of these machines under balanced load conditions. In this paper, each phase voltage is controlled separately through separated converters, which consist of a full-bridge diode rectifier and one-IGBT. For this purpose, the principle of the electronic load controllers supported by fuzzy logic is employed in the two-different proposed converter structures. While changing single phase consumer loads that are independent from each other, the output voltages of the generator are controlled independently by three-number of separated electronic load controllers (SELCs) in two different mode operations. The aim is to obtain a rated power from the SEIG via the switching of the dump loads to be the complement of consumer load variations. The transient and steady state behaviors of the whole system are investigated by simulation studies from the point of getting the design parameters, and experiments are carried out for validation of the results. The results illustrate that the proposed SELC system is capable of coping with independent consumer load variations to keep output voltage at a desired value for each phase. It is also available for unbalanced consumer load conditions. In addition, it is concluded that the proposed converter without a filter capacitor has less harmonics on the currents.

Experimental Study of Flexural Behavior of Reinforced Concrete Beam Using WFS and Recycled Aggregate (순환골재와 폐주물사를 활용한 철근콘크리트보의 휨거동에 관한 실험연구)

  • Kim, Seong-Soo;Lee, Dae-Kyu
    • KIEAE Journal
    • /
    • v.8 no.5
    • /
    • pp.61-68
    • /
    • 2008
  • For the recycling of the resources and the preservation of the environment, this study's purpose is to measure flexural behavior of the reinforced concrete beams with the major variables like concrete strength, replacement ratio of the recycled aggregate and the waste foundry sand and the tension reinforcement ratio and to present the data of the recycled aggregate used for the structure design. The experiment on the flexural behavior resulted in the followings. The ultimate strength of recycled R/C beam was manipulated proportionate to the tension reinforcement ratio, however the strength instantly decreased after passing the ultimate load due to the destroyed concrete of the compression side. The deflection at the maximum load varied from the tension reinforcement ratio by 5.5 times. The test specimen with the tension reinforcement ratio less than $0.5{\rho}b$ showed constant curve without change in the load from the yield to the ultimate load in contrast to the distinctive plastic region where the displacement was rising. Although the strain of main tension steel with the reinforcement ratio indicate different, the design of recycled concrete member can be applied for current design code for reinforced concrete structure as the ratio of tension reinforcement district the under the reinforcement ration in a balanced strain condition.

Design of a Hybrid Controller for the Three-phase Four-leg Voltage-source Inverter with Unbalanced Load

  • Doan, Van-Tuan;Kim, Ki-Young;Choi, Woojin;Kim, Dae-Wook
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.181-189
    • /
    • 2017
  • The three-phase four-leg voltage-source inverter topology is an interesting option for the three-phase four-wire system. With an additional leg, this topology can achieve superior performance under unbalanced and nonlinear load conditions. However, because of the low bandwidth of conventional controllers in high-power inverter applications, the system cannot guarantee a balanced output voltage under the unbalanced load condition. Most of the methods proposed to solve this problem mainly use the multiple synchronous frame method, which requires several controllers and a large amount of computation because of frame transformation. This study proposes a simple hybrid controller that combines proportional-integral (PI) and resonant controllers in the synchronous frame synchronized with the positive-sequence component of the output voltage of the three-phase four-leg inverter. The design procedure for the controller and the theoretical analysis are presented. The performance of the proposed method is verified by the experimental results and compared with that of the conventional PI controller.

Analysis of Voltage Control of Stand-Alone Microgrid for High Quality Power Supply (고품질 전력공급을 위한 독립형 마이크로그리드의 전압제어 해석)

  • Jo, Jongmin;Lee, Hakju;Shin, Chang-hoon;Cha, Hanju
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.253-257
    • /
    • 2016
  • This paper analyzes voltage control method in order to supply high-quality power for stand-alone microgrid. Stand-alone microgrid is composed of battery bank, stand-alone PCS and controllable loads. The main role of stand-alone PCS is to supply high-quality power to loads as main source by using stable voltage method regardless of load conditions. In particularly, output voltage of stand-alone PCS gets severely unbalanced voltage under unbalanced loads. Fundamental positive and negative sequences are transformed by two coordinates transformation which are rotated in each opposite direction, respectively. Each fundamental d-q voltage is regulated by each fundamental PI control. In addition, low-order harmonics are compensated through resonant controllers. Performance of stand-alone microgrid is tested for feasibility, and it is verified that output voltage of THD is improved to 1% from 2.2% under 50 kW balanced load, and is improved to 1.1% from 2.6% under 50 kW unbalanced load.

Interleaved ZVS DC/DC Converter with Balanced Input Capacitor Voltages for High-voltage Applications

  • Lin, Bor-Ren;Chiang, Huann-Keng;Wang, Shang-Lun
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.661-670
    • /
    • 2014
  • A new DC/DC converter with zero voltage switching is proposed for applications with high input voltage and high load current. The proposed converter has two circuit modules that share load current and power rating. Interleaved pulse-width modulation (PWM) is adopted to generate switch control signals. Thus, ripple currents are reduced at the input and output sides. For high-voltage applications, each circuit module includes two half-bridge legs that are connected in series to reduce switch voltage rating to $V_{in}/2$. These legs are controlled with the use of asymmetric PWM. To reduce the current rating of rectifier diodes and share load current for high-load-current applications, two center-tapped rectifiers are adopted in each circuit module. The primary windings of two transformers are connected in series at the high voltage side to balance output inductor currents. Two series capacitors are adopted at the AC terminals of the two half-bridge legs to balance the two input capacitor voltages. The resonant behavior of the inductance and capacitance at the transition interval enable MOSFETs to be switched on under zero voltage switching. The circuit configuration, system characteristics, and design are discussed in detail. Experiments based on a laboratory prototype are conducted to verify the effectiveness of the proposed converter.