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  Abstract 
 
Content distribution to a large number of concurrent clients stresses both server and network. 

While the server limitation can be circumvented by deploying server clusters, the network 

limitation is far less easy to cope with, due to the difficulty in measuring and balancing 

network load. In this paper, we use two useful network load metrics, the worst link stress 

(WLS) and the degree of interference (DOI), and formulate the problem as partitioning the 

clients into disjoint subsets subject to the server capacity constraint so that the WLS and the 

DOI are reduced for each session and also well balanced across the sessions. We present a 

network load-aware partition algorithm, which is practicable and effective in achieving the 

design goals. Through experiments on PlanetLab, we show that the proposed scheme has the 

remarkable advantages over existing schemes in reducing and balancing the network load. 

We expect the algorithm and performance metrics can be easily applied to various Internet 

applications, such as media streaming, multicast group member selection. 
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1. Introduction 

Network load balancing is a methodology to distribute workload across network to achieve 

optimal resource utilization, maximize throughput, minimize congestion, and avoid 

bottleneck. It is being received significant attention because one of the distinct trends related 

to the Internet is that it is being used to distribute content on a more and more massive scale. 

Some servers that provide content have become tremendously popular and have millions of 

clients.
2
 

The service requests from a large number of concurrent clients can lead to server and 

network that are frequently overloaded. While the server limitation can be circumvented by 

deploying server farms or server clusters, the network limitation is far less easy to cope with, 

due to the difficulty in determining the cause and location of congestion and in provisioning 

extra resources. If many concurrent connections pass through the same network links, they 

may overload the links. A likely consequence is poorly balanced network load, which hurts 

the overall service quality of all clients, as well as causes inefficient utilization of the 

network resources. Even when a well-provisioned server has been placed, the quality of 

service at the receiving side is not satisfactory because of the unbalanced network load; 

therefore, successful deployment of content distribution systems requires a scheme that is 

conducive to mitigate this problem. 

In this paper, we consider the problem of client partitioning in content distribution system 

with the objective of balancing the network load. One can imagine that there exist a server 

containing the data and a large number of clients requesting all or portions of the data.3 The 

server may not be able to serve all the clients simultaneously due to its insufficient resources, 

such as outbound bandwidth or computational power. The server could be allowed to 

partition the clients into disjoint subsets and serve each subset at a time. We call a subset of 

clients a session. The problem addressed in this paper is how to partition the clients into 

sessions subject to the server capacity constraint so that the network load is reduced for each 

session and also well balanced across the sessions. A balanced use of the network resources 

allows it to accommodate more clients and service channels, the most important concern for 

content providers. 

For illustration of the problem, consider the toy example in Fig. 1. Suppose a server is 

connected with four clients and can serve at most two clients at a time. Suppose the links 

have roughly identical bandwidth, we wish to find the optimal partition that balances the 

network load. The content distribution paths should be a tree rooted at the server and 

covering all clients as Fig. 1(a). Two possible partitions are {(A,B),(C,D)} and {(A,C),(B,D)} 

which are shown in Fig. 1(b) and Fig. 1(c), respectively. Intuitively, it is easy to see that (c) 

is better than (b) from the point of view of network load balance.4 
 

                                                           
2 YouTube is a prime example. Around a quarter of the Internet users on any given day are estimated to visit 

YouTube. 
3 It is not required that the clients request identical data, e.g., the same file. 
4 The reason is that IP multicast is not broadly available on the Internet. Some ISPs and networks support it 

internally, but it is usually not available across network boundaries as is needed forcontent distribution. 
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In the client partition problem, we identify two important issues. First, how a server should 

partition its clients? With thousands of clients, finding the optimal solution is not trivial and 

the obtained performance can dramatically vary depending on it. When done properly, it 

provides improved utilization of the network capacity, a remedy for congestion, or gives the 

fast distribution. If done improperly, on the other hand, unbalanced load has made capacity 

shortage in the network a genuine possibility, which will become more serious as the number 

of clients increases. 

The second issue is what to measure in the evaluation and comparison of different client 

partitions from the network perspective. While there have been a number of schemes 

developed, prior works mostly focus on user-centric performance metrics, such as the round-

trip time (RTT), downloading time or packet loss rate of individual connection, but tend to 

ignore the network-centric objectives, such as the network load balance, congestion or 

bottleneck. The latter performance concerns are more important for the content provider 

because network congestion and load balance are critical when many data flows are 

transmitted simultaneously. In particular, the bandwidth sensitive services, such as media 

streaming, are characterized by network congestion and bandwidth usage. Therefore, it is 

necessary to consider network-centric metrics that is able to effectively measure the loads on 

the network resources. 

This paper is fairly unique in emphasizing two network-centric metrics, the worst link 

stress (WLS)[1] and the degree of interference (DOI)[2], for the measurement of the network 

load. The WLS is the largest number of downloading streams on any link and directly related 

to the worst congestion level in the network. The DOI measures the total number of 

downloading streams seen by all network links. The DOI is useful to measure the total 

network resource usage, including the total bandwidth and the number of links used by the 

session. 

In this paper, we present a greedy client partition algorithm that minimizes the WLS and 

DOI for each session, and balances them across sessions. The experimental results from the 

actual Internet testbed, PlanetLab[3], show that the proposed algorithm is simple yet 

effective in achieving the design goals. 

The rest of the paper is organized as follows. In Section 2, we review previous works on 

related problems. In Section 3, we introduce two network-centric performance metrics. In 

Section 4, we present the network load balancing client partition algorithm and analyze its 

Fig. 1. A toy example of client partition problem. A server(root) distributes streaming contents to 

four clients (a). Partition of (c) achieves better load balance than (b). 
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running time. We evaluate the algorithm and compare it with other algorithms through 

experiments on PlanetLab in Section 5. Finally, the conclusions are drawn in Section 6. 
 

2. Related Works 

The literature on content distribution is vast. We will mainly review the most relevant studies 

in content distribution system, which handles its clients in a variety of (usually ad-hoc) 

ways
5
. We can roughly classify the content distribution systems into three categories, which 

are likely to continue their coexistence.  

In the first category, the infrastructure-based content distribution systems (e.g., Akamai 

[4][5]) and web caches generally gather neighbor nodes. The second category is tree-based 

end-system multicast (e.g., [6][7]) where all clients are typically served by the common tree 

root.   The third category is mesh-based P2P systems, which typically employ the techniques 

of file striping and collaborative download (e.g., BitTorrent[8][9]). Their client management 

algorithms vary a lot. In PPStream[10][11] and FastReplica[12][13], client selection is 

essentially done randomly. Other systems employ a node ranking function. A node favors 

other nodes with high ranking. The ranking function may be the nodal load (CoBlitz[14]), 

the round-trip time (RTT) (ChunkCast[15]), the sending and/or receiving bandwidth to and 

from each node[8][9], and the degree of content overlap between the client and the server 

(Bullet [16][17]). One common practice is that a node initially selects some random nodes, 

but gradually probes other nodes and dynamically switches to those with better ranking over 

the course of data transmission.  

While a lot of research efforts have been directed to the problem, important issues relative 

to the overall network congestion and load balance are not systematically covered by the 

literature. Network resource usage efficiency is always among the most important issues in 

networking systems. In fact, a main concern for content providers would be to optimize it in 

order to maximize the overall throughput. A scheme that is conducive to mitigating 

congestion or balancing network resource usage is valuable. From this point of view, our 

paper is fairly unique in emphasizing the network-centric performance metrics.  

3. Preliminaries 

3.1 Network Load Metrics 

Suppose },...,{ 1 nssS  is a subset of nodes in a tree,  , and E  is the set of edges used by 

the paths from root to the nodes in S, called S-paths. 
 

Definition 1 The link stress of an edge e in  , denoted by LS(e), is the number of S-paths via 

e. Let E be the set of all edges in  . The worst link stress (WLS) is defined as, 
 

WLS(s1,..., sn ) = max
eÎE
LS(e) 

                                                           
5Not all systems frame or handle the problem explicitly, but all should have at least an implicit client handling 

algorithm. 
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The root of the tree represents the content server, and the leaves and some intermediate 

nodes are clients. The WLS is the largest number of data streams on any link and is an 

indication of how well the load is balanced in the network and of how much connections to 

different clients interfere with each other at the bottleneck link, assuming the links have 

roughly identical bandwidth. It is both a measure of the burden placed of the point-to-point 

connections on the network and a measure of the quality of stream delivery. The reciprocal 

of the WLS tells how many times each stream can be increased without causing network 

congestion. It gives the maximum affordable number of subscribers and service channels. 

The issue of reducing link stress has also been considered in several other works[18][19][20]. 

We found that content distribution sessions following our client partition algorithm make a 

balanced use of the network bandwidth, which tends to cause the least interference to other 

clients. 

 

Definition 2 The degree of interference (DOI) of nodes s1,..., sn is defined as,  

DOI(s1,..., sn ) = (LS(e)-1)
eÎE

å  

 

For example, in Fig. 2, if s1 = 3, s2 = 5  and s3 = 8, then DOI(s1, s2, s3) = 3 because the 

number of S-paths on link (1,2) is 2 and on link (0,1) is 3. 

The DOI is closely related to the network resource usage and the degree of congestion in 

the network[21].  Suppose the nodes in S are clients, each receiving a data stream from the 

server (root). Let the base case for comparison be that every edge involved in the data 

Fig. 2. An example of partitioning algorithm (Algorithm 1). The tree contains a server (node 0) and 9 

clients (node 3,5,8,11,12,13,16,17,18). The grey nodes comprise a partition formed by Algorithm 1. 
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transmission session sees exactly one stream. The DOI measures the difference between the 

total number of streams seen by all edges and the base case. From a slightly different 

viewpoint, suppose there is one unit of cost associated with a stream traversing an edge, and 

suppose every client receives one stream from the server. The DOI is the difference between 

the actual total cost and the cost of the base case where each edge sees exactly one stream. 

Therefore, the DOI is useful to measure the total network bandwidth usage by the point-to-

point connections.  

Also, as will be shown by our experimental results in Section 5, the DOI tends to be 

correlated with the WLS. Hence, minimizing the WLS usually also reduces the DOI. The 

reason is that the minimum DOI usually occurs when none of the links have many data 

streams on them, that is, none of the links are highly congested. 

3.2 Build A Content Distribution Tree 

In a content distribution system, the client management is usually centralized and the server 

manages the list of connecting clients. The algorithm proposed in this paper assumes that a 

tree topology is known for the server where the point-to-point connections established 

between the server and each client.  

In many cases, Internet routers are reluctant or unable to provide internal network 

information such as topology, bandwidth, delay, or packet loss rates. Thus, there needs to be 

a way to discover unknown network states by using measurements available at the end hosts. 

[22] refers to a set of techniques to infer internal network properties using measurements 

available at the end hosts and the edge routers as “Internet tomography.” For instance, active 

or passive packet probes are commonly used with multicast or unicast traffic to obtain the 

internal network topology [23]. [24] introduces an interesting scheme where the entropy of 

inter-packet spacing is used to find the bottleneck.  

Whereas there are several inference schemes, in practice, traceroute has been popular in 

finding the network topology. Even though [25] reports that the deterministic topology 

inference problem is NP-hard if there are anonymous routers that won't reveal their identity 

to traceroute probes, by using a heuristic algorithm in [25] we can deduce a reasonably 

accurate network topology. Thus, we assume traceroute and the algorithm in [25] is used 

when less than 10% of routers are anonymous. If more than 10% of the routers are 

anonymous, we can apply a statistical inference method described in [26] to discover 

mission links. Therefore, we rely on traceroute and the inference schemes discussed above 

to build a tree, T, rooted at content server for our algorithm. 

4. Client Partition Algorithm 

Suppose that there exists a server and a large number of clients requesting data. Due to the 

server capacity limitation (e.g., computational power, outbound bandwidth), server can 

service a subset of all the clients at a time. The problem is how to partition the clients into 

disjoint subsets (or sessions) subject to the server capacity constraints so that the WLS and 

the DOI are reduced for each session and also well balanced across the sessions. 

As the preliminary step, we use traceroute and the topology inference schemes discussed 

in Section 3.2 to build a tree   rooted at content server. Then, we do a depth-first search 

(DFS) on   and label all the nodes in the order that they are first visited. Let us denote the 

label of node u in   by I(u). When there is no confusion, we will use u and I(u) 

interchangeably to denote node u. Let Su be the subtree rooted at node u in  . 
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4.1 Problem Statement 

Given a tree   where the server is the root and all the leaf nodes and some internal nodes are 

clients,   {       }  Suppose the server can serve a maximum of ⌈
 

 
⌉(   ) clients 

simultaneously due to its capacity limitation. In order to efficiently serve all the clients, the 

server partitions the clients into m disjoint groups,        , and serves each group at a time. 

Our goal is to find partitions of the client set so as to reduce and balance the network loads 

across the sessions. 
 

Definition 3 The lowest common ancestor (LCA) of a set of nodes   {       }, where 

   , in a tree is the deepest node in the tree that is a common ancestor of all nodes in  . 

Itis denoted by    ( ) or    (       ). 
 

Lemma 1 Given a tree   , do depth-first search(DFS) and label all the nodes in the order 

that they were first visited. Suppose u and v are two nodes in  , and  ( )   ( ). Then, the 

relation of (u,v) must be one of the following cases. 

 

   (   )                
 

Proof The proof of Lemma 1 is rather easy due to the property of the DFS algorithm, we 

omit it for brevity.  

 

Lemma 2 Suppose S is a set of nodes in an arbitrary tree. Let W1,…, Wn be a covering of S. 

That is,                         
     . Then,  

 

   ( )     (   (  )      (  )) 
 

Proof The proof of Lemma 2 is rather easy due to the definition of LCA, we omit it for 

brevity.   

 

Lemma 3 Suppose (s1, s2,s3) is a sorted list of distinct nodes in   by their IDs. Then, 

 

   (        )     (     ) 
 

Proof  The relation of (s1,s2) and (s2,s3) must be one of the following cases by Lemma 1. 

 

– Case 1: LCA(s1,s2) =s1 and LCA(s2,s3)=s2  or    (     )                      

   (        )      (   (     )   )      (     ) 

– Case 2:                    (     )     

By property of LCA, LCA(s1,s2)=LCA(s1,s3). Therefore,    (        )   
   (      (     ))      (     )      (     ) 

– Case 3:                              
Suppose LCA(s1,s2,s3) ≠ LCA(s1, s3) and let v=LCA(s1,s2,s3). By the nature of 

DFS, LCA(s1,s3) is an ancestor of s1, s2, and s3. If LCA(s1,s3) ≠ v, LCA(s1,s3) 

must be an ancestor of v, it contradicts that LCA(s1,s3) is the lowest common 

ancestor of s1 and s3.   
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Lemma 4 Suppose (s1,… ,sn) is a sorted list of distinct nodes in   by their IDs. Then,  

 

   (       )     (     ) 
 

Proof  The proof will be based on induction on n. The case of n=2 is trivial. The base case 

n=3 is proven in Lemma 3. Let us make the induction hypothesis that the lemma is true for 

the list (s1, … ,sl), where 3 <l<n. We will show it is true for (s1, … ,sl+1). 

 

   (         )     (       ) 
 

Definition 4 Given a set, S, of two or more nodes in a tree, let us denote the set of LCAs of 

all subsets of S with two or more nodes by SLCA(S). 

 

For example, in Fig. 2, if S = {3, 5, 8, 11}, then SLCA(S) = {0, 1, 2}. 

 

Lemma 5 Suppose (s1,… ,sn) is a sorted list of distinct nodes in    by their IDs. Then, 

    (       )   ⋃   (       )

   

   

 

Proof  Let S = {s1, … ,sn}. By Lemma 2, we only need to focus on the LCAs of node pairs, 

because they form a covering for every subset of S. Thus, by definition,     ( )  
           (     ). The proof is based on induction. Let us define the sets Let S

i
 = {s1, 

… ,si}, for 2 ≤ i ≤n. As the base case, the lemma is trivially true for S
2
. We make the 

induction hypothesis that the lemma is true for S
l
, whe e 2 ≤ l<n. Then, 

    (    )  (⋃   (       )

   

   

)  (⋃   (       )

 

   

) 

Consider LCA(si, sl+1) f   s me 1 ≤ i ≤ l-1. Then, 

 

   (       )     (     )       (       ). 
 

LCA(si, sl+1) is either the same as LCA(sl, sl+1), or the same as LCA(si, sl), which is already in 

SLCA(S
l
). Hence, 

    (    )  ⋃    (       )
 

   
 

 

Definition 5 Given a set S with two or more nodes in  , the virtual tree  ̂  ( ̂  ̂) is 

formed by the nodes   ̂      ( )   . For any two nodes      ̂, (   )   ̂if u is the 

immediate ancestor of v in   ̂. That is, u is on the path from v to the root of  , and there are 

no other nodes in  ̂ on the path segment from v to u. The root of   ̂ is LCA(S). 

  

An example of the virtual tree  ̂ is shown in Fig. 2. An efficient algorithm for constructing 

  ̂is based on Lemma 5. First, we sort the nodes in S in increasing order of the node ID. This 

takes O(n log n). Now, assume S = (s1,… ,sn) is a sorted list. The  set of nodes in  ̂ is 

 ̂  {   (     )    (     )      (       )}. The root is      (     ). The edges 

in  ̂ can be identified by traversing the paths in   from each node, say v, in  ̂ toward the 

root of  . In each step along the way, we inspect if the current node, say u, is in  ̂. If so, the 
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edge (u, v) is added to  ̂, and the path traversal originating from node v is stopped. It can be 

done in O(n
2
). This scheme will work on any general network provided the server has 

collected the topology information of the network.  

 

Lemma 6 The running time for the construction of the virtual tree  ̂ is O(n
2
). 

Proof By Lemma 5.   

4.1.1 Algorithm Description 

Our client partition algorithm, Algorithm 1, takes two arguments as input, a set of clients and 

the size of session. Inside the for loop between line 4 and 30, it selects clients whose WLS is 

the minimum to build a session. The loop repeats until the client set becomes empty. 

Let us consider the example shown in Fig. 2, where   has nine clients, C = 

{3,5,8,11,12,13,16,17,18}, indicated as squared nodes. The objective is to partition C into 

three sessions. The set of nodes in  ̂ are triangled. Each node in  ̂ is also labeled with |Cv|, 

|Mv| and q(v), where Cw is the set of clients in Sw, Mv is the set that contains all nodes in C for 

which v is the immediate ancestor in  ̂ (i.e., in SLCA(C)) and that have no descendants in C, 

and q(v) is the number of clients to be selected from the subtree of    rooted at v, Sv. The first 

session of clients is indicated with arrows. The first node to be visited is the root of  ̂, node 
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0, denoted by u. It is understood that three clients are to be selected from Su. The motivation 

is that the nodes in Mu generate no more than one unit of link stress on the edges from u. The 

three clients to be selected are allocated to the subtrees of   rooted at the children of u in  ̂, 

according to Algorithm 2. The resulting allocation is that 1, 1, and 1 clients are to be selected 

from the subtrees rooted at node 1, 9, and 14, respectively. Then, it runs recursively for each 

subtree, S1, S9, S14. Finally, we get 3 partitions, G1={8,11,18}, G2={5,12,16}, G3={3,13,17}. 

Table 1 compares with the random algorithm in terms of the network load metrics.  

Table 1. Comparison of partition algorithms 

Scheme Sessions WLS DOI 

Algorithm 1 
{8,11,18},{5,12,16},{3,1

3,17} 
1,1,1 0,0,0 

Random 

algorithm 

{3,8,17},{5,16,18},{11,1

2,13} 
2,2,3 1,2,4 

 

The key idea of the for loop between line 4 and 30 is that the link stress of any edge (u, v), 

where u and v are nodes in a tree,  , and u is the parent of v, is no less than that of any edge 

in the subtree Sv. Hence, the edge with the worst link stress must be connected to the root of 

 . One possible algorithm for minimizing the WLS is as follows. Let W be the set of 

children of the root. For wW, let Cw be the set of clients in Sw. Suppose each w in W is 

labeled with |Cw|, i.e., the number of nodes in Cw. Let Mv be the set that contains all nodes in 

C for which v is the immediate ancestor in  ̂  (i.e., in SLCA(C)), and that have no 

descendants in C. Then, we call Algorithm 2 with the arguments l = |W|, (b1, … , bl) equal to 

the list of |Cw|'s and q = k. The returned list of numbers from Algorithm 2 is an optimal 

allocation, with respect to the WLS-minimization criterion, of the number of clients to be 

selected in each subtree Sw, for all wW. The actual algorithm builds on top of this basic idea. 

It minimizes the WLS recursively in the sense that it minimizes the WLS for every subtree 

rooted at every vSLCA(C). The WLS for each such subtree, Sv, is defined over only the 

edges in Sv. That is, the WLS over Sv is maxeEvLS(e), where Ev is the set of edges in Sv.  

Line 5 can be accomplished in O(n) by Lemma 5, line 6 is O(n
2
) by Lemma 6, and line 7 

can be done in the process of building virtual tree (line 6). Let us now analyze the running 

time of the while loop. In each entry into the while loop, we only need to consider the 

running time of Algorithm 2 called in line 21. In line 16, the total number of operations by 

the completion of the while loop cannot be more than the size of Gi, which is at most n. 

Similarly, the for loop in line 22 through 26 cannot take more than O(n) over all entries into 

the while loop, because this part simply visits all nodes in SLCA(C) one at a time. Therefore, 

the running time for Algorithm 1 is O(n
3
). 

4.1.2 Allocation Subroutine 

Algorithm 2 takes three arguments, (l, (b1, …, bl), q), where l and q are positive integers, and 

(b1,…, bl) is a vector of l positive integers. It returns a vector of l positive integers.  

Consider l sets, 1 through l, where l ≥ 1. Set j contains bj items (1 ≤ j≤l). Suppose we must 

choose q items from these l sets. The objective is to decide the number of items chosen from 

set j, denoted by cj, for 1 ≤j≤l, so that    
     and that the largest cj is minimized. That is, 

max1 ≤j≤lcj is minimized. Any vector (  )   
  such that     

      will be called a feasible 

allocation. In our setting of client partition in a tree  , as an example, the sets may 
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correspond to the subtrees rooted at each of the children of the root, and the items may be the 

nodes in C.  

It is interesting to point out that Algorithm 2 maximizes the minimum cj over all j. When 

each item is infinitely divisible, there is a classic notion of max-min allocation or max-min 

fairness[27]. We say a feasible (  )   
  is a max-min allocation if, for any other feasible 

allocation (  ̅)   
 ,      ̅ for some j implies that there exists some i with       and      ̅. 

In other words, in the max-min allocation (  )   
 , we cannot increase cj without reducing 

some ci, which is already smaller than or equal to cj. This definition in fact applies to more 

general settings such as network bandwidth allocation to different connections subject to the 

capacity constraints at the network links. In our simple setting, it has an alternative 

characterization. Let us denote c(j) to be the j
th
  smallest number in (  )   

 . Repeated 

elements are ordered arbitrarily among themselves.  

Algorithm 2 first finds the maximum of the min-max allocation. In line 6 of Algorithm 2, 

the list (b1,…, bl) is sorted and the set indices are redefined so that the list is in non-

decreasing order. In an allocation (  )   
 , if cj = bj, we say set j is saturated. Otherwise, it is 

said to be non-saturated. If (  )   
  were the min-max allocation for the infinitely divisible 

case, the non-saturated sets would all have the same allocation, which would be the 

maximum. In the discrete case, it is possible that some non-saturated sets are allocated fewer 

Than the maximum number of items. In lines 7 through 20, the algorithm computes the 

number t by trying the sequence t = b1, t =b2,…. The eventual value of t is equal to the 

maximum of a min-max allocation if all sets are saturated or allnon-saturated sets have 

identical allocation. Otherwise, t isequal to one less than the maximum, and the number r is 

equal to the number of sets with the maximum number of items
6
. In lines 21 through 23, 

                                                           
6In line 15,     denotes the floor of a, i.e., the largest integer not exceeding  . 
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each set j selects min(bj, t) items, for 1 ≤j≤l. In the case where t is not the maximum 

(indicated by r> 0), the last r sets each select an additional item (lines 24through 26). 

Therefore, the running time for Algorithm2 is O(n
2
). 

5. Evaluation 

In this section, we present experimental results demonstrating the benefits of Algorithm 1 on 

an actual global Internet testbed, PlanetLab[3]. The PlanetLab network currently consists of 

1133 nodes at 515 sites. We found 614 nodes available across the Internet at the time of our 

experiments. We collected the traceroute data between the PlanetLab nodes, which was used 

to calculate the WLS, DOI, physical paths, and round-trip time (RTT). More specifically, we 

randomly selected 3 nodes as content servers from the US, Europe, and Asia 

(planet2.cs.rochester.edu,planet01.hhi.fraunhofer.de, planet0.jaist.ac.jp), respectively. In 

each experiment, 64 nodes (about 10% of all nodes) were randomly chosen as the client 

nodes. Then, the server partitioned the client nodes into 8 sessions and served each session at 

a time. While serving each session, we counted the number of streams on each physical link 

for measuring the WLS and the DOI. For each server, the experiment was repeated with 

different client sets and we present the average of the results obtained. 

We compare our algorithm with (1) the Random scheme where each session, the server 

chooses ⌈
 

 
⌉ (   )  clients uniformly at random from the client pool toconstruct the 

session, (2) the Closest scheme, where the server groups clients by the RTT from the server. 

These two schemes are the most typical strategies in the related works[4][15]. 

Fig. 3(a)-3(c) compare the distribution of the WLS of the sessions among the Closest 

scheme, the Random scheme, and Algorithm 1. For each run, we sort the measured WLS for 

the sessions in increasing order. The more gradual the slope is, the better WLSs are balanced 

among sessions. In all cases, Algorithm 1 yields the most balanced WLSs among the 

sessions. This is because Algorithm 1 strategically partitions clients to minimize the WLS. 

This suggests that, if we identify "load" with the number of streams on a link, Algorithm 1 is 

the best from the load balancing point of view. Throughout the experiments, the Closest 

scheme yields the worst balanced loads among sessions.  

Fig. 3(d)-3(f) plots the distribution of the DOI of the sessions. For each run, we sort the 

measured DOI for the sessions in increasing order. We see that Algorithm 1 yields the most 

uniformly distributed DOI for all servers, leading to very well balanced bandwidth usage. 

The saving in network bandwidth is substantial, too. Moreover, the average DOI of all 

sessions is much lower than the other schemes. This indicates that WLS is a good metric for 

the network performance. 

Fig. 3(g)-3(i) plots the distribution of the average RTTs of the sessions. For each run, we 

sort the average RTTs in increasing order. We see that Algorithm 1 produces the most 

balanced results for all servers. For example, in Fig. 3(h), the maximum difference of the 

RTT between sessions is about 300ms for the Closest scheme, while Algorithm 1 yields only 

170ms.  
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Fig. 3. WLS, DOI, and RTT are compared among the Closest, Random, and Algorithm 1 for three 

different servers. It is clear that Algorithm 1 outperforms the other methods in balancing WLS and 

DOI, and it also balances RTT comparable to Random. 
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Fig. 3(j)-3(l) compares the worst WLS, the worst DOI, and the worst RTT of each method 

for each server, respectively. In Fig. 3(j), Algorithm 1 yields the smallest worst WLSs 

compared to other methods in all servers. Improvement of up to 31% was observed. 

Likewise, Fig. 3(k) shows that Algorithm 1 outperforms the Closest and the Random 

schemes by 20 and 10 DOIs on average, respectively. Lastly, Fig. 3(l) compares the RTT of 

each method. In all servers, Algorithm 1 yields significantly smaller RTTs than the Closest 

scheme.  Algorithm 1 also outperformed the Random scheme in the US and Japan servers, 

while the Random scheme yields less RTT than Algorithm 1 in the Germany server. This is 

because Random scheme may balance RTT very well depending on the RTT distribution 

among clients. However, as shown in Fig. 3, the balanced RTT not necessarily yields 

balanced network performance. 

6. Conclusions 

In this paper, we make an in-depth investigation on the issue of distributing network loads, 

which is a fundamental problem in massive content distribution systems. We introduce two 

useful network load metrics, WLS and DOI, and formulate the problem as partitioning 

clients into disjoint subsets according to the WLS criterion.  Then, we present a partition 

algorithm in which the network loads of each session is reduced and also well-balanced 

across the sessions.  

Using simulations on PlanetLab, we show that our scheme is practicable and effective in 

achieving the design goals.  It is noticeable that our algorithm performs significantly better 

than the random algorithm and the closest algorithm, which are the most commonly used 

schemes.  

Due to the nature of the problem, our problem formulation, algorithm, and performance 

metrics in this paper are relevant and can be applied to various Internet applications, 

including IPTV, VoD, cloud computing, P2P networks,  or edge-mapping in content 

distribution networks. 
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