
22 Han et al.: Distributing Network Loads in Tree-based Content Distribution System

Distributing Network Loads in Tree-based
Content Distribution System

Seung Chul Han

1
, Sungwook Chung

2
, Kwang-Sik Lee

1
, Hyunmin Park

1
 and *Minho Shin

1

1 Department of Computer Engineering,

Myongji University, Seoul, Korea
2 Department of Computer Engineering,

Changwon National University,Changwon, Korea

[dr.seungchul@gmail.com, swchung@changwon.ac.kr, hush@naver.com, hpark@mju.ac.kr,

shinminho@gmail.com]

*Correspondingauthor: Minho Shin

Received September 2, 2012; revised November 30, 2012; accepted January 3, 2012; published January 29, 2013

 Abstract

Content distribution to a large number of concurrent clients stresses both server and network.

While the server limitation can be circumvented by deploying server clusters, the network

limitation is far less easy to cope with, due to the difficulty in measuring and balancing

network load. In this paper, we use two useful network load metrics, the worst link stress

(WLS) and the degree of interference (DOI), and formulate the problem as partitioning the

clients into disjoint subsets subject to the server capacity constraint so that the WLS and the

DOI are reduced for each session and also well balanced across the sessions. We present a

network load-aware partition algorithm, which is practicable and effective in achieving the

design goals. Through experiments on PlanetLab, we show that the proposed scheme has the

remarkable advantages over existing schemes in reducing and balancing the network load.

We expect the algorithm and performance metrics can be easily applied to various Internet

applications, such as media streaming, multicast group member selection.

Keywords: Content distribution, load balance, optimization
1

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea

government(MEST)(2012-0005552,2011-0015187,2011-0003930,2010-0016970,2009-0069191)

http://dx.doi.org/10.3837/tiis.2013.01.002

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 1, Jan 2013 23

Copyright ⓒ 2013 KSII

1. Introduction

Network load balancing is a methodology to distribute workload across network to achieve

optimal resource utilization, maximize throughput, minimize congestion, and avoid

bottleneck. It is being received significant attention because one of the distinct trends related

to the Internet is that it is being used to distribute content on a more and more massive scale.

Some servers that provide content have become tremendously popular and have millions of

clients.
2

The service requests from a large number of concurrent clients can lead to server and

network that are frequently overloaded. While the server limitation can be circumvented by

deploying server farms or server clusters, the network limitation is far less easy to cope with,

due to the difficulty in determining the cause and location of congestion and in provisioning

extra resources. If many concurrent connections pass through the same network links, they

may overload the links. A likely consequence is poorly balanced network load, which hurts

the overall service quality of all clients, as well as causes inefficient utilization of the

network resources. Even when a well-provisioned server has been placed, the quality of

service at the receiving side is not satisfactory because of the unbalanced network load;

therefore, successful deployment of content distribution systems requires a scheme that is

conducive to mitigate this problem.

In this paper, we consider the problem of client partitioning in content distribution system

with the objective of balancing the network load. One can imagine that there exist a server

containing the data and a large number of clients requesting all or portions of the data.3 The

server may not be able to serve all the clients simultaneously due to its insufficient resources,

such as outbound bandwidth or computational power. The server could be allowed to

partition the clients into disjoint subsets and serve each subset at a time. We call a subset of

clients a session. The problem addressed in this paper is how to partition the clients into

sessions subject to the server capacity constraint so that the network load is reduced for each

session and also well balanced across the sessions. A balanced use of the network resources

allows it to accommodate more clients and service channels, the most important concern for

content providers.

For illustration of the problem, consider the toy example in Fig. 1. Suppose a server is

connected with four clients and can serve at most two clients at a time. Suppose the links

have roughly identical bandwidth, we wish to find the optimal partition that balances the

network load. The content distribution paths should be a tree rooted at the server and

covering all clients as Fig. 1(a). Two possible partitions are {(A,B),(C,D)} and {(A,C),(B,D)}

which are shown in Fig. 1(b) and Fig. 1(c), respectively. Intuitively, it is easy to see that (c)

is better than (b) from the point of view of network load balance.4

2 YouTube is a prime example. Around a quarter of the Internet users on any given day are estimated to visit

YouTube.
3 It is not required that the clients request identical data, e.g., the same file.
4 The reason is that IP multicast is not broadly available on the Internet. Some ISPs and networks support it

internally, but it is usually not available across network boundaries as is needed forcontent distribution.

24 Han et al.: Distributing Network Loads in Tree-based Content Distribution System

In the client partition problem, we identify two important issues. First, how a server should

partition its clients? With thousands of clients, finding the optimal solution is not trivial and

the obtained performance can dramatically vary depending on it. When done properly, it

provides improved utilization of the network capacity, a remedy for congestion, or gives the

fast distribution. If done improperly, on the other hand, unbalanced load has made capacity

shortage in the network a genuine possibility, which will become more serious as the number

of clients increases.

The second issue is what to measure in the evaluation and comparison of different client

partitions from the network perspective. While there have been a number of schemes

developed, prior works mostly focus on user-centric performance metrics, such as the round-

trip time (RTT), downloading time or packet loss rate of individual connection, but tend to

ignore the network-centric objectives, such as the network load balance, congestion or

bottleneck. The latter performance concerns are more important for the content provider

because network congestion and load balance are critical when many data flows are

transmitted simultaneously. In particular, the bandwidth sensitive services, such as media

streaming, are characterized by network congestion and bandwidth usage. Therefore, it is

necessary to consider network-centric metrics that is able to effectively measure the loads on

the network resources.

This paper is fairly unique in emphasizing two network-centric metrics, the worst link

stress (WLS)[1] and the degree of interference (DOI)[2], for the measurement of the network

load. The WLS is the largest number of downloading streams on any link and directly related

to the worst congestion level in the network. The DOI measures the total number of

downloading streams seen by all network links. The DOI is useful to measure the total

network resource usage, including the total bandwidth and the number of links used by the

session.

In this paper, we present a greedy client partition algorithm that minimizes the WLS and

DOI for each session, and balances them across sessions. The experimental results from the

actual Internet testbed, PlanetLab[3], show that the proposed algorithm is simple yet

effective in achieving the design goals.

The rest of the paper is organized as follows. In Section 2, we review previous works on

related problems. In Section 3, we introduce two network-centric performance metrics. In

Section 4, we present the network load balancing client partition algorithm and analyze its

Fig. 1. A toy example of client partition problem. A server(root) distributes streaming contents to

four clients (a). Partition of (c) achieves better load balance than (b).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 1, Jan 2013 25

Copyright ⓒ 2013 KSII

running time. We evaluate the algorithm and compare it with other algorithms through

experiments on PlanetLab in Section 5. Finally, the conclusions are drawn in Section 6.

2. Related Works

The literature on content distribution is vast. We will mainly review the most relevant studies

in content distribution system, which handles its clients in a variety of (usually ad-hoc)

ways
5
. We can roughly classify the content distribution systems into three categories, which

are likely to continue their coexistence.

In the first category, the infrastructure-based content distribution systems (e.g., Akamai

[4][5]) and web caches generally gather neighbor nodes. The second category is tree-based

end-system multicast (e.g., [6][7]) where all clients are typically served by the common tree

root. The third category is mesh-based P2P systems, which typically employ the techniques

of file striping and collaborative download (e.g., BitTorrent[8][9]). Their client management

algorithms vary a lot. In PPStream[10][11] and FastReplica[12][13], client selection is

essentially done randomly. Other systems employ a node ranking function. A node favors

other nodes with high ranking. The ranking function may be the nodal load (CoBlitz[14]),

the round-trip time (RTT) (ChunkCast[15]), the sending and/or receiving bandwidth to and

from each node[8][9], and the degree of content overlap between the client and the server

(Bullet [16][17]). One common practice is that a node initially selects some random nodes,

but gradually probes other nodes and dynamically switches to those with better ranking over

the course of data transmission.

While a lot of research efforts have been directed to the problem, important issues relative

to the overall network congestion and load balance are not systematically covered by the

literature. Network resource usage efficiency is always among the most important issues in

networking systems. In fact, a main concern for content providers would be to optimize it in

order to maximize the overall throughput. A scheme that is conducive to mitigating

congestion or balancing network resource usage is valuable. From this point of view, our

paper is fairly unique in emphasizing the network-centric performance metrics.

3. Preliminaries

3.1 Network Load Metrics

Suppose },...,{ 1 nssS  is a subset of nodes in a tree, , and E is the set of edges used by

the paths from root to the nodes in S, called S-paths.

Definition 1 The link stress of an edge e in , denoted by LS(e), is the number of S-paths via

e. Let E be the set of all edges in . The worst link stress (WLS) is defined as,

WLS(s1,..., sn) = max
eÎE
LS(e)

5Not all systems frame or handle the problem explicitly, but all should have at least an implicit client handling

algorithm.

26 Han et al.: Distributing Network Loads in Tree-based Content Distribution System

The root of the tree represents the content server, and the leaves and some intermediate

nodes are clients. The WLS is the largest number of data streams on any link and is an

indication of how well the load is balanced in the network and of how much connections to

different clients interfere with each other at the bottleneck link, assuming the links have

roughly identical bandwidth. It is both a measure of the burden placed of the point-to-point

connections on the network and a measure of the quality of stream delivery. The reciprocal

of the WLS tells how many times each stream can be increased without causing network

congestion. It gives the maximum affordable number of subscribers and service channels.

The issue of reducing link stress has also been considered in several other works[18][19][20].

We found that content distribution sessions following our client partition algorithm make a

balanced use of the network bandwidth, which tends to cause the least interference to other

clients.

Definition 2 The degree of interference (DOI) of nodes s1,..., sn is defined as,

DOI(s1,..., sn) = (LS(e)-1)
eÎE

å

For example, in Fig. 2, if s1 = 3, s2 = 5 and s3 = 8, then DOI(s1, s2, s3) = 3 because the

number of S-paths on link (1,2) is 2 and on link (0,1) is 3.

The DOI is closely related to the network resource usage and the degree of congestion in

the network[21]. Suppose the nodes in S are clients, each receiving a data stream from the

server (root). Let the base case for comparison be that every edge involved in the data

Fig. 2. An example of partitioning algorithm (Algorithm 1). The tree contains a server (node 0) and 9

clients (node 3,5,8,11,12,13,16,17,18). The grey nodes comprise a partition formed by Algorithm 1.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 1, Jan 2013 27

Copyright ⓒ 2013 KSII

transmission session sees exactly one stream. The DOI measures the difference between the

total number of streams seen by all edges and the base case. From a slightly different

viewpoint, suppose there is one unit of cost associated with a stream traversing an edge, and

suppose every client receives one stream from the server. The DOI is the difference between

the actual total cost and the cost of the base case where each edge sees exactly one stream.

Therefore, the DOI is useful to measure the total network bandwidth usage by the point-to-

point connections.

Also, as will be shown by our experimental results in Section 5, the DOI tends to be

correlated with the WLS. Hence, minimizing the WLS usually also reduces the DOI. The

reason is that the minimum DOI usually occurs when none of the links have many data

streams on them, that is, none of the links are highly congested.

3.2 Build A Content Distribution Tree

In a content distribution system, the client management is usually centralized and the server

manages the list of connecting clients. The algorithm proposed in this paper assumes that a

tree topology is known for the server where the point-to-point connections established

between the server and each client.

In many cases, Internet routers are reluctant or unable to provide internal network

information such as topology, bandwidth, delay, or packet loss rates. Thus, there needs to be

a way to discover unknown network states by using measurements available at the end hosts.

[22] refers to a set of techniques to infer internal network properties using measurements

available at the end hosts and the edge routers as “Internet tomography.” For instance, active

or passive packet probes are commonly used with multicast or unicast traffic to obtain the

internal network topology [23]. [24] introduces an interesting scheme where the entropy of

inter-packet spacing is used to find the bottleneck.

Whereas there are several inference schemes, in practice, traceroute has been popular in

finding the network topology. Even though [25] reports that the deterministic topology

inference problem is NP-hard if there are anonymous routers that won't reveal their identity

to traceroute probes, by using a heuristic algorithm in [25] we can deduce a reasonably

accurate network topology. Thus, we assume traceroute and the algorithm in [25] is used

when less than 10% of routers are anonymous. If more than 10% of the routers are

anonymous, we can apply a statistical inference method described in [26] to discover

mission links. Therefore, we rely on traceroute and the inference schemes discussed above

to build a tree, T, rooted at content server for our algorithm.

4. Client Partition Algorithm

Suppose that there exists a server and a large number of clients requesting data. Due to the

server capacity limitation (e.g., computational power, outbound bandwidth), server can

service a subset of all the clients at a time. The problem is how to partition the clients into

disjoint subsets (or sessions) subject to the server capacity constraints so that the WLS and

the DOI are reduced for each session and also well balanced across the sessions.

As the preliminary step, we use traceroute and the topology inference schemes discussed

in Section 3.2 to build a tree rooted at content server. Then, we do a depth-first search

(DFS) on and label all the nodes in the order that they are first visited. Let us denote the

label of node u in by I(u). When there is no confusion, we will use u and I(u)

interchangeably to denote node u. Let Su be the subtree rooted at node u in .

28 Han et al.: Distributing Network Loads in Tree-based Content Distribution System

4.1 Problem Statement

Given a tree where the server is the root and all the leaf nodes and some internal nodes are

clients, { } Suppose the server can serve a maximum of ⌈

⌉() clients

simultaneously due to its capacity limitation. In order to efficiently serve all the clients, the

server partitions the clients into m disjoint groups, , and serves each group at a time.

Our goal is to find partitions of the client set so as to reduce and balance the network loads

across the sessions.

Definition 3 The lowest common ancestor (LCA) of a set of nodes { }, where

 , in a tree is the deepest node in the tree that is a common ancestor of all nodes in .

Itis denoted by () or ().

Lemma 1 Given a tree , do depth-first search(DFS) and label all the nodes in the order

that they were first visited. Suppose u and v are two nodes in , and () (). Then, the

relation of (u,v) must be one of the following cases.

 ()

Proof The proof of Lemma 1 is rather easy due to the property of the DFS algorithm, we

omit it for brevity.

Lemma 2 Suppose S is a set of nodes in an arbitrary tree. Let W1,…, Wn be a covering of S.

That is,
 . Then,

 () (() ())

Proof The proof of Lemma 2 is rather easy due to the definition of LCA, we omit it for

brevity.

Lemma 3 Suppose (s1, s2,s3) is a sorted list of distinct nodes in by their IDs. Then,

 () ()

Proof The relation of (s1,s2) and (s2,s3) must be one of the following cases by Lemma 1.

– Case 1: LCA(s1,s2) =s1 and LCA(s2,s3)=s2 or ()

 () (()) ()

– Case 2: ()

By property of LCA, LCA(s1,s2)=LCA(s1,s3). Therefore, ()
 (()) () ()

– Case 3:
Suppose LCA(s1,s2,s3) ≠ LCA(s1, s3) and let v=LCA(s1,s2,s3). By the nature of

DFS, LCA(s1,s3) is an ancestor of s1, s2, and s3. If LCA(s1,s3) ≠ v, LCA(s1,s3)

must be an ancestor of v, it contradicts that LCA(s1,s3) is the lowest common

ancestor of s1 and s3.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 1, Jan 2013 29

Copyright ⓒ 2013 KSII

Lemma 4 Suppose (s1,… ,sn) is a sorted list of distinct nodes in by their IDs. Then,

 () ()

Proof The proof will be based on induction on n. The case of n=2 is trivial. The base case

n=3 is proven in Lemma 3. Let us make the induction hypothesis that the lemma is true for

the list (s1, … ,sl), where 3 <l<n. We will show it is true for (s1, … ,sl+1).

 () ()

Definition 4 Given a set, S, of two or more nodes in a tree, let us denote the set of LCAs of

all subsets of S with two or more nodes by SLCA(S).

For example, in Fig. 2, if S = {3, 5, 8, 11}, then SLCA(S) = {0, 1, 2}.

Lemma 5 Suppose (s1,… ,sn) is a sorted list of distinct nodes in by their IDs. Then,

 () ⋃ ()

Proof Let S = {s1, … ,sn}. By Lemma 2, we only need to focus on the LCAs of node pairs,

because they form a covering for every subset of S. Thus, by definition, ()
 (). The proof is based on induction. Let us define the sets Let S

i
 = {s1,

… ,si}, for 2 ≤ i ≤n. As the base case, the lemma is trivially true for S
2
. We make the

induction hypothesis that the lemma is true for S
l
, whe e 2 ≤ l<n. Then,

 () (⋃ ()

) (⋃ ()

)

Consider LCA(si, sl+1) f s me 1 ≤ i ≤ l-1. Then,

 () () ().

LCA(si, sl+1) is either the same as LCA(sl, sl+1), or the same as LCA(si, sl), which is already in

SLCA(S
l
). Hence,

 () ⋃ ()

Definition 5 Given a set S with two or more nodes in , the virtual tree ̂ (̂ ̂) is

formed by the nodes ̂ () . For any two nodes ̂, () ̂if u is the

immediate ancestor of v in ̂. That is, u is on the path from v to the root of , and there are

no other nodes in ̂ on the path segment from v to u. The root of ̂ is LCA(S).

An example of the virtual tree ̂ is shown in Fig. 2. An efficient algorithm for constructing

 ̂is based on Lemma 5. First, we sort the nodes in S in increasing order of the node ID. This

takes O(n log n). Now, assume S = (s1,… ,sn) is a sorted list. The set of nodes in ̂ is

 ̂ { () () ()}. The root is (). The edges

in ̂ can be identified by traversing the paths in from each node, say v, in ̂ toward the

root of . In each step along the way, we inspect if the current node, say u, is in ̂. If so, the

30 Han et al.: Distributing Network Loads in Tree-based Content Distribution System

edge (u, v) is added to ̂, and the path traversal originating from node v is stopped. It can be

done in O(n
2
). This scheme will work on any general network provided the server has

collected the topology information of the network.

Lemma 6 The running time for the construction of the virtual tree ̂ is O(n
2
).

Proof By Lemma 5.

4.1.1 Algorithm Description

Our client partition algorithm, Algorithm 1, takes two arguments as input, a set of clients and

the size of session. Inside the for loop between line 4 and 30, it selects clients whose WLS is

the minimum to build a session. The loop repeats until the client set becomes empty.

Let us consider the example shown in Fig. 2, where has nine clients, C =

{3,5,8,11,12,13,16,17,18}, indicated as squared nodes. The objective is to partition C into

three sessions. The set of nodes in ̂ are triangled. Each node in ̂ is also labeled with |Cv|,

|Mv| and q(v), where Cw is the set of clients in Sw, Mv is the set that contains all nodes in C for

which v is the immediate ancestor in ̂ (i.e., in SLCA(C)) and that have no descendants in C,

and q(v) is the number of clients to be selected from the subtree of rooted at v, Sv. The first

session of clients is indicated with arrows. The first node to be visited is the root of ̂, node

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 1, Jan 2013 31

Copyright ⓒ 2013 KSII

0, denoted by u. It is understood that three clients are to be selected from Su. The motivation

is that the nodes in Mu generate no more than one unit of link stress on the edges from u. The

three clients to be selected are allocated to the subtrees of rooted at the children of u in ̂,

according to Algorithm 2. The resulting allocation is that 1, 1, and 1 clients are to be selected

from the subtrees rooted at node 1, 9, and 14, respectively. Then, it runs recursively for each

subtree, S1, S9, S14. Finally, we get 3 partitions, G1={8,11,18}, G2={5,12,16}, G3={3,13,17}.

Table 1 compares with the random algorithm in terms of the network load metrics.

Table 1. Comparison of partition algorithms

Scheme Sessions WLS DOI

Algorithm 1
{8,11,18},{5,12,16},{3,1

3,17}
1,1,1 0,0,0

Random

algorithm

{3,8,17},{5,16,18},{11,1

2,13}
2,2,3 1,2,4

The key idea of the for loop between line 4 and 30 is that the link stress of any edge (u, v),

where u and v are nodes in a tree, , and u is the parent of v, is no less than that of any edge

in the subtree Sv. Hence, the edge with the worst link stress must be connected to the root of

 . One possible algorithm for minimizing the WLS is as follows. Let W be the set of

children of the root. For wW, let Cw be the set of clients in Sw. Suppose each w in W is

labeled with |Cw|, i.e., the number of nodes in Cw. Let Mv be the set that contains all nodes in

C for which v is the immediate ancestor in ̂ (i.e., in SLCA(C)), and that have no

descendants in C. Then, we call Algorithm 2 with the arguments l = |W|, (b1, … , bl) equal to

the list of |Cw|'s and q = k. The returned list of numbers from Algorithm 2 is an optimal

allocation, with respect to the WLS-minimization criterion, of the number of clients to be

selected in each subtree Sw, for all wW. The actual algorithm builds on top of this basic idea.

It minimizes the WLS recursively in the sense that it minimizes the WLS for every subtree

rooted at every vSLCA(C). The WLS for each such subtree, Sv, is defined over only the

edges in Sv. That is, the WLS over Sv is maxeEvLS(e), where Ev is the set of edges in Sv.

Line 5 can be accomplished in O(n) by Lemma 5, line 6 is O(n
2
) by Lemma 6, and line 7

can be done in the process of building virtual tree (line 6). Let us now analyze the running

time of the while loop. In each entry into the while loop, we only need to consider the

running time of Algorithm 2 called in line 21. In line 16, the total number of operations by

the completion of the while loop cannot be more than the size of Gi, which is at most n.

Similarly, the for loop in line 22 through 26 cannot take more than O(n) over all entries into

the while loop, because this part simply visits all nodes in SLCA(C) one at a time. Therefore,

the running time for Algorithm 1 is O(n
3
).

4.1.2 Allocation Subroutine

Algorithm 2 takes three arguments, (l, (b1, …, bl), q), where l and q are positive integers, and

(b1,…, bl) is a vector of l positive integers. It returns a vector of l positive integers.

Consider l sets, 1 through l, where l ≥ 1. Set j contains bj items (1 ≤ j≤l). Suppose we must

choose q items from these l sets. The objective is to decide the number of items chosen from

set j, denoted by cj, for 1 ≤j≤l, so that
 and that the largest cj is minimized. That is,

max1 ≤j≤lcj is minimized. Any vector ()
 such that

 will be called a feasible

allocation. In our setting of client partition in a tree , as an example, the sets may

32 Han et al.: Distributing Network Loads in Tree-based Content Distribution System

correspond to the subtrees rooted at each of the children of the root, and the items may be the

nodes in C.

It is interesting to point out that Algorithm 2 maximizes the minimum cj over all j. When

each item is infinitely divisible, there is a classic notion of max-min allocation or max-min

fairness[27]. We say a feasible ()
 is a max-min allocation if, for any other feasible

allocation (̅)
 , ̅ for some j implies that there exists some i with and ̅.

In other words, in the max-min allocation ()
 , we cannot increase cj without reducing

some ci, which is already smaller than or equal to cj. This definition in fact applies to more

general settings such as network bandwidth allocation to different connections subject to the

capacity constraints at the network links. In our simple setting, it has an alternative

characterization. Let us denote c(j) to be the j
th
 smallest number in ()

 . Repeated

elements are ordered arbitrarily among themselves.

Algorithm 2 first finds the maximum of the min-max allocation. In line 6 of Algorithm 2,

the list (b1,…, bl) is sorted and the set indices are redefined so that the list is in non-

decreasing order. In an allocation ()
 , if cj = bj, we say set j is saturated. Otherwise, it is

said to be non-saturated. If ()
 were the min-max allocation for the infinitely divisible

case, the non-saturated sets would all have the same allocation, which would be the

maximum. In the discrete case, it is possible that some non-saturated sets are allocated fewer

Than the maximum number of items. In lines 7 through 20, the algorithm computes the

number t by trying the sequence t = b1, t =b2,…. The eventual value of t is equal to the

maximum of a min-max allocation if all sets are saturated or allnon-saturated sets have

identical allocation. Otherwise, t isequal to one less than the maximum, and the number r is

equal to the number of sets with the maximum number of items
6
. In lines 21 through 23,

6In line 15, denotes the floor of a, i.e., the largest integer not exceeding .

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 1, Jan 2013 33

Copyright ⓒ 2013 KSII

each set j selects min(bj, t) items, for 1 ≤j≤l. In the case where t is not the maximum

(indicated by r> 0), the last r sets each select an additional item (lines 24through 26).

Therefore, the running time for Algorithm2 is O(n
2
).

5. Evaluation

In this section, we present experimental results demonstrating the benefits of Algorithm 1 on

an actual global Internet testbed, PlanetLab[3]. The PlanetLab network currently consists of

1133 nodes at 515 sites. We found 614 nodes available across the Internet at the time of our

experiments. We collected the traceroute data between the PlanetLab nodes, which was used

to calculate the WLS, DOI, physical paths, and round-trip time (RTT). More specifically, we

randomly selected 3 nodes as content servers from the US, Europe, and Asia

(planet2.cs.rochester.edu,planet01.hhi.fraunhofer.de, planet0.jaist.ac.jp), respectively. In

each experiment, 64 nodes (about 10% of all nodes) were randomly chosen as the client

nodes. Then, the server partitioned the client nodes into 8 sessions and served each session at

a time. While serving each session, we counted the number of streams on each physical link

for measuring the WLS and the DOI. For each server, the experiment was repeated with

different client sets and we present the average of the results obtained.

We compare our algorithm with (1) the Random scheme where each session, the server

chooses ⌈

⌉ () clients uniformly at random from the client pool toconstruct the

session, (2) the Closest scheme, where the server groups clients by the RTT from the server.

These two schemes are the most typical strategies in the related works[4][15].

Fig. 3(a)-3(c) compare the distribution of the WLS of the sessions among the Closest

scheme, the Random scheme, and Algorithm 1. For each run, we sort the measured WLS for

the sessions in increasing order. The more gradual the slope is, the better WLSs are balanced

among sessions. In all cases, Algorithm 1 yields the most balanced WLSs among the

sessions. This is because Algorithm 1 strategically partitions clients to minimize the WLS.

This suggests that, if we identify "load" with the number of streams on a link, Algorithm 1 is

the best from the load balancing point of view. Throughout the experiments, the Closest

scheme yields the worst balanced loads among sessions.

Fig. 3(d)-3(f) plots the distribution of the DOI of the sessions. For each run, we sort the

measured DOI for the sessions in increasing order. We see that Algorithm 1 yields the most

uniformly distributed DOI for all servers, leading to very well balanced bandwidth usage.

The saving in network bandwidth is substantial, too. Moreover, the average DOI of all

sessions is much lower than the other schemes. This indicates that WLS is a good metric for

the network performance.

Fig. 3(g)-3(i) plots the distribution of the average RTTs of the sessions. For each run, we

sort the average RTTs in increasing order. We see that Algorithm 1 produces the most

balanced results for all servers. For example, in Fig. 3(h), the maximum difference of the

RTT between sessions is about 300ms for the Closest scheme, while Algorithm 1 yields only

170ms.

34 Han et al.: Distributing Network Loads in Tree-based Content Distribution System

Fig. 3. WLS, DOI, and RTT are compared among the Closest, Random, and Algorithm 1 for three

different servers. It is clear that Algorithm 1 outperforms the other methods in balancing WLS and

DOI, and it also balances RTT comparable to Random.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 1, Jan 2013 35

Copyright ⓒ 2013 KSII

Fig. 3(j)-3(l) compares the worst WLS, the worst DOI, and the worst RTT of each method

for each server, respectively. In Fig. 3(j), Algorithm 1 yields the smallest worst WLSs

compared to other methods in all servers. Improvement of up to 31% was observed.

Likewise, Fig. 3(k) shows that Algorithm 1 outperforms the Closest and the Random

schemes by 20 and 10 DOIs on average, respectively. Lastly, Fig. 3(l) compares the RTT of

each method. In all servers, Algorithm 1 yields significantly smaller RTTs than the Closest

scheme. Algorithm 1 also outperformed the Random scheme in the US and Japan servers,

while the Random scheme yields less RTT than Algorithm 1 in the Germany server. This is

because Random scheme may balance RTT very well depending on the RTT distribution

among clients. However, as shown in Fig. 3, the balanced RTT not necessarily yields

balanced network performance.

6. Conclusions

In this paper, we make an in-depth investigation on the issue of distributing network loads,

which is a fundamental problem in massive content distribution systems. We introduce two

useful network load metrics, WLS and DOI, and formulate the problem as partitioning

clients into disjoint subsets according to the WLS criterion. Then, we present a partition

algorithm in which the network loads of each session is reduced and also well-balanced

across the sessions.

Using simulations on PlanetLab, we show that our scheme is practicable and effective in

achieving the design goals. It is noticeable that our algorithm performs significantly better

than the random algorithm and the closest algorithm, which are the most commonly used

schemes.

Due to the nature of the problem, our problem formulation, algorithm, and performance

metrics in this paper are relevant and can be applied to various Internet applications,

including IPTV, VoD, cloud computing, P2P networks, or edge-mapping in content

distribution networks.

References

[1] S. C. Han and Y. Xia, "Optimal node selection algorithm for parallel download in overlay

content," Computer Networks, vol. 53, pp. 1480-1496, 2009. Article (CrossRef Link)

[2] S. C. Han and Y. Xia, "Constructing an optimal server set in structured peer-to-peer network,"

IEEE JSAC, vol. 25, pp. 170-178, 2007. Article (CrossRef Link)

[3] "PlanetLab," [Online]. Available: http://www.planet-lab.org.

[4] "Akamai," [Online]. Available: http://www.akamai.com.

[5] E. Nygren, R. K. Sitaraman and J. Sun, "The Akamai Network: A platform for high-performance

Internet applications," ACM SIGOPS Operating Systems Review, vol. 44, 2010. Article (CrossRef

Link)

[6] C. X. Zheng and Y. Xia, "Optimal swarming for massive content distribution," IEEE

Transactions on Parallel and Distributed Systems, vol. 21, no. 6, 2010. Article (CrossRef Link)

[7] Y. Xia, S. Chen, C. Cho and V. Korgaonkar, "Algorithms and performance of load balancing

with multiple hash functions in massive content distribution," Computer Networks, vol. 53, 2009.

Article (CrossRef Link)

[8] "BitTorrent," [Online]. Available: http://www.bittorrent.com.

http://dx.doi.org/10.1016/j.comnet.2009.01.011
http://dx.doi.org/10.1109/JSAC.2007.070117
http://dx.doi.org/10.1145/1842733.1842736
http://dx.doi.org/10.1145/1842733.1842736
http://dx.doi.org/10.1109/TPDS.2009.133
http://dx.doi.org/10.1016/j.comnet.2008.10.003

36 Han et al.: Distributing Network Loads in Tree-based Content Distribution System

[9] J. Pouwelse, P. Garbacki, D. Epema and H. Sips, "The BitTorrent P2P file-sharing system:

Measurements and analysis," Peer-to-Peer Systems IV, vol. 3640, 2005. Article (CrossRef Link)

[10] "PPStream," [Online]. Available: http://www.ppstream.com.

[11] J. Jia, C. Li and C. Chens, "Characterizing PPStream across Internet," in NPC Workhops, 2007.

Article (CrossRef Link)

[12] L. Cherkasova and J. Lee, "FastReplica: Efficient large file distribution within content delivery

networks," in USITS, 2003.

[13] J. Lee and G. Veciana, "On application-level load balancing in FastReplica," Computer

Communications, vol. 30, 2007. Article (CrossRef Link)

[14] K. Park and V. S. Pai, "Scale and performance in the CoBlitz largefile distribution service," in

USENIX/ACM NSDI, 2006.

[15] B. Chun, P. Wu, H. Weatherspoon and J. Kubiatowicz, "ChunkCast: An anycast service for large

content distribution," in USENIX IPTPS, 2006.

[16] D. Kosti, A. Rodriguez, J. Albrecht and A. Vahdat, "Bullet: high bandwidth data dissemination

using an overlay mesh," in SOSP, 2003. Article (CrossRef Link)

[17] D. Kostic, A. Rodriguez, J. Albrecht and A. Vahdat, "Bullet: high bandwidth data dissemination

using an overlay mesh," ACM SIGOPS Operating Systems Review, vol. 37, 2003. Article

(CrossRef Link)

[18] M. Castro, M. Jones, H. Wang and A. Wolman, "An evaluation of scalable application-level

multicast built using peer-to-peer overlays," in INFOCOM, 2003. Article (CrossRef Link)

[19] S. Ratnasamy, M. Handley, R. M. Karp and S. Shenker, "Application-level multicast using

content-addressable networks," Networked Group Communications, vol. 2233, 2001.

[20] Y. Chu, "A case for end system multicast," IEEE JSAC, vol. 20, 2002. Article (CrossRef Link)

[21] S. C. Han and Y. Xia, "Network load-aware content distribution in overlay networks," Computer

Communications, vol. 32, 2009. Article (CrossRef Link)

[22] N. Knight, H. X. Nguyen and M. Roughan, "The Internet Topology Zoo," IEEE JSAC, vol. 29,

Oct 2011. Article (CrossRef Link)

[23] N. Duffield and F. Presti, "Network tomography from measured end-to-end delay covariance,"

IEEE Transactions on Networking, vol. 12, 2004. Article (CrossRef Link)

[24] I. Bazzi, D. Katabi and X. Yang, "A passive approach for detecting shared bottlenecks," in

ICCCN, 2002.

[25] F. Chang, B. Yao, R. Viswanathan and D. Waddington, "Topology inference in the presence of

anonymous routers," in INFOCOM, 2003. Article (CrossRef Link)

[26] R. Castro, M. Coates and R. Nowak, "Maximum likelihood network topology identification from

edge-based unicast measurements," in SIGMETRICS, 2002. Article (CrossRef Link)

[27] D. Bertsekas and R. Gallager, Data Networks, Prentice-Hall, 1995.

http://dx.doi.org/10.1007/11558989_19
http://dx.doi.org/10.1109/NPC.2007.34
http://dx.doi.org/10.1016/j.comcom.2007.01.013
http://dx.doi.org/10.1145/945445.945473
http://dx.doi.org/10.1145/1165389.945473
http://dx.doi.org/10.1145/1165389.945473
http://dx.doi.org/10.1109/INFCOM.2003.1208986
http://dx.doi.org/10.1109/JSAC.2002.803066
http://dx.doi.org/10.1016/j.comcom.2008.09.021
http://dx.doi.org/10.1109/JSAC.2011.111002
http://dx.doi.org/10.1109/TNET.2004.838612
http://dx.doi.org/10.1109%2fINFCOM.2003.1208687
http://dx.doi.org/10.1145%2f511334.511337

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 1, Jan 2013 37

Copyright ⓒ 2013 KSII

Seung Chul Han is an assistant professor at the Computer Engineering department

at the Myongji University, Seoul, Korea. He has a PhD degree in Computer Science

from the University of Florida in 2007, an MS degree in 2003 from Purdue

University, and a BS degree from Sogang University, Seoul, Korea. His primary

research interests include networks, security, and Android-linux systems.

Sungwook Chung is an assistant professor in the Department of Computer

Engineering at Changwon National University, Korea. He received M.S. and Ph.D

degrees in Computer and Information Science and Engineering from the

Universityof Florida, USA, in 2005 and 2010, respectively. He worked for smart

IPTV developments at the KT Central R&D Lab. in Korea from 2010 to 2012. His

research interests include distributed multimedia systmes and community area

networks.

Kwang-Sik Lee received the BS degree from the Hanyang University and the MS

degree from Yonsei University, Seoul, Korea. He is currently working toward the

Ph.D degree in Computer Engineering at the Myongji University. His primary

research interests include network protocols and security.

Hyunmin Park received the BS degree in electronics engineering from the Seoul

National University, Seoul, Korea, in 1985; and the MS and PhD degrees in

computer engineering from North Carolina State University, Raleigh, in 1988 and

1995. He is a professor in the Department of Computer Engineering at Myongji

University in South Korea. His research interests include computer network

architecture, routing protocols, cloud computing and network security.

Minho Shin is an Assistant Professor in the Department of Computer Engineering

at Myongji University, Korea. His research interests include Wireless Networks,

Mobile Computing, and Network Security. He received a BS in Computer Science

from the Seoul National University, Korea, an MS and Ph.D in Computer Science

from the University of Maryland, College Park.

