• Title/Summary/Keyword: load test

Search Result 8,113, Processing Time 0.037 seconds

Wind Load Analysis owing to the Computation Fluid Dynamics and Wind Tunnel Test of a Container Crane (컨테이너 크레인의 전산유동해석과 풍동실험에 의한 풍하중 분석)

  • Lee, Su-Hong;Han, Dong-Seop;Han, Geun-Jo
    • Journal of Navigation and Port Research
    • /
    • v.33 no.3
    • /
    • pp.215-220
    • /
    • 2009
  • Container cranes are vulnerable structure to difficult weather conditions bemuse there is no shielding facility to protect them from strong wind. This study was carried out to analyze the effect of wind load on the structure of a container crane according to the change of the boom shape using wind tunnel test and computation fluid dynamics. And we provide a container crane designer with data which am be used in a wind resistance design of a container crane assuming that a wind load 75m/s wind velocity is applied in a container crane. In this study, we applied mean wind load conformed to 'Design Criteria of Wind Load' in 'Load Criteria of Building Structures' and an external fluid field was divided as interval of 10 degrees to analyze the effect according to a wind direction. In this conditions, we carried out the wind tunnel test and the computation fluid dynamic analysis and than we analyzed the wind load which was needed to design the container crane.

Proposed Shear Load-transfer Curves for Prebored and Precast Steel Piles (강관 매입말뚝의 주면 하중전이 곡선(t-z) 제안)

  • Kim, Do-Hyun;Park, Jong-Jeon;Chang, Yong-Chai;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.43-58
    • /
    • 2018
  • In this study, the load-transfer behavior along the shaft of the prebored and precast piles was investigated by pile loading tests. Special attention was given to quantifying the skin frictions developed between the pile-soil interfaces of the 14 instrumented test piles. Based on this detailed field tests, the load - settlement curves and axial load distributions of piles were obtained and the load-transfer curves (t-z curves) for the test piles were proposed. As such, it is found that the test results show two different load transfer behaviors; ductile and brittle behavior curves. The corresponding t-z curves are proposed based on the hyperbolic- and sawtooth-shape, respectively. By validating the accuracy of the proposed curves, it is also found that the prediction results based on the proposed load-transfer curve are in good agreement with the general trends observed by the field loading tests.

Nondestructive Buckling Load Prediction of Pressurized Unstiffened Metallic Cylinder Using Vibration Correlation Technique (Vibration Correlation Technique을 이용한 내부 압력을 받는 금속재 단순 원통 구조의 비파괴적 전역 좌굴 하중 예측)

  • Jeon, Min-Hyeok;Kong, Seung-Taek;Cho, Hyun-Jun;Kim, In-Gul;Park, Jae-Sang;Yoo, Joon-Tae;Yoon, Yeoung-Ha
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.75-82
    • /
    • 2022
  • Nondestructive method to predict buckling load for the propellant tank of launch vehicle should be evaluated. Vibration correlation technique can predict the global buckling load of unstiffened cylindrical structure with geometric initial imperfection using correlation of natural frequency and compressive load from compressive test below the buckling load. In this study, vibration and buckling tests of a thin metal unstiffened propellant tank model subjected to internal pressure and compressive loads were performed and the test results were used for VCT to predict global buckling load. For the vibration test of thin structure, non-contact excitation method using a speaker was used. The response was measured with piezoelectric polymer(PVDF) sensor. Prediction results of VCT were compared with the measured buckling load in the test and the nondestructive global buckling load prediction method was verified.

Relationship Between Modified Physiological Cost Index for Isokinetic Ergometer Exercise Test and Oxygen Consumption (등속성 에르고미터 운동을 이용한 수정된 생리적 부담 지수와 산소소비량 변화량과의 상관성)

  • Park, Ho-Joon;Cho, Sang-Hyun;Yi, Chung-Hwi;Park, Jung-Mi
    • Physical Therapy Korea
    • /
    • v.7 no.2
    • /
    • pp.20-34
    • /
    • 2000
  • The purpose of this study was to establish modified physiological cost index (PCI) for predicting energy consumption by heart rate (HR) at isokinetic ergometer exercise testing. The subjects were twenty-eight healthy men in their twenties. All of them performed upper and lower extremity isokinetic ergometer exercise tests which had six loads (400, 500, 600, 700, 800, and 900 kg-m/min) and five loads (400, 500, 600, 700, and 800 kg-m/min) respectively. The exercise sessions were finished when HR was in plateau. HR and oxygen consumption were determined during the final minute. Resting heart rate and oxygen consumption were used for calculating heart rate, oxygen consumption changes and modified PCI. Regression analysis established the relationship between each variable to work load, HR and oxygen consumption. The results were as follows: 1) In the lower extremity ergometer exercise test, oxygen consumption increased continuously as work load increased, but in the upper extremity ergometer test, oxygen consumption only increased until work load was 700 kg-m/min. 2) HR increased as work load increased in both exercise tests, but in the upper extremity ergometer test, HR decreased from the 700 kg-m/min. 3) The modified PCI increased as work load mcreased until the 700 kg-m/min point in the lower extremity ergometer test and until the 500 kg-m/min point in the upper extremity ergometer test when it started to decrease in both tests. 4) In the lower extremity ergometer exercise test, regression analysis established the relation as $dVO_2$ = -.0215HR - .2141 where $dVO_2$ is given in l/min and HR in beat/min ($R^2$ = .2677, p = .000). ln the upper extremity ergometer exercise test. regression analysis established the relation as $dVO_2$ = -.0115HR + .2746 ($R^2$ = .1308, p = .000). The results of this study were similar to previous studies but were different under high work load conditions. So modified PCI should be used with only low intensity work load testing. Subjects for upper extremity ergometer exercise testing should complete a prescribed training course prior to testing, and only low intensity work load should be used for safety considerations.

  • PDF

Experimental investigation of shear connector behaviour in composite beams with metal decking

  • Qureshi, Jawed;Lam, Dennis
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.475-494
    • /
    • 2020
  • Presented are experimental results from 24 full-scale push test specimens to study the behaviour of composite beams with trapezoidal profiled sheeting laid transverse to the beam axis. The tests use a single-sided horizontal push test setup and are divided into two series. First series contained shear loading only and the second had normal load besides shear load. Four parameters are studied: the effect of wire mesh position and number of its layers, placing a reinforcing bar at the bottom flange of the deck, normal load and its position, and shear stud layout. The results indicate that positioning mesh on top of the deck flange or 30 mm from top of the concrete slab does not affect the stud's strength and ductility. Thus, existing industry practice of locating the mesh at a nominal cover from top of the concrete slab and Eurocode 4 requirement of placing mesh 30 mm below the stud's head are both acceptable. Double mesh layer resulted in 17% increase in stud strength for push tests with single stud per rib. Placing a T16 bar at the bottom of the deck rib did not affect shear stud behaviour. The normal load resulted in 40% and 23% increase in stud strength for single and double studs per rib. Use of studs only in the middle three ribs out of five increased the strength by 23% compared to the layout with studs in first four ribs. Eurocode 4 and Johnson and Yuan equations predicted well the stud strength for single stud/rib tests without normal load, with estimations within 10% of the characteristic experimental load. These equations highly under-estimated the stud capacity, by about 40-50%, for tests with normal load. AISC 360-16 generally over-estimated the stud capacity, except for single stud/rib push tests with normal load. Nellinger equations precisely predicted the stud resistance for push tests with normal load, with ratio of experimental over predicted load as 0.99 and coefficient of variation of about 8%. But, Nellinger method over-estimated the stud capacity by about 20% in push tests with single studs without normal load.

Design of Drilled Shafts Foundation by LRFD in Incheon Bridge Project (인천대교 민자구간의 대구경 현장타설 말뚝기초의 LRFD 설계 적용 사례)

  • Kim, Jeong-Hwan;Lee, Hyun-Gun;Shin, Hyun-Yang;Youn, Man-Geun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.551-561
    • /
    • 2006
  • Incheon bridge project is to construct total 12km long bridges on the sea consist of 800m span length cable stayed bridge, approach bridge and viaduct bridge based on LRFD design specification. To design pile foundations by RCD of each bridge unit, total 4 number of preliminary full scale pile load tests with Osterberg cell method were carried out on the piles for testing. The test load was planned to more than the expected design ultimate capacity and about 29,000tons maximum load was recorded. From the interpretation of test results, design parameters are evaluated and applied to the design. Preliminary pile load test plan and detailed execution of pile load tests are introduced and summarized. The resistance factors are presented for pile design of Incheon Bridge Project in LRFD considering variation of ground conditions and number of test piles.

  • PDF

An Experimental Study on the Performance of One-Way Slab Using Unbonded Post-Tensioned Anchorage for Single Tendon (비부착식 단일 강연선용 원형 정착구의 일방향 슬래브 적용에 관한 실험적 연구)

  • Kim, Min Sook;Ro, Kyong Min;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.45-51
    • /
    • 2019
  • In this study, the static load test and the load transfer test were carried out to evaluate the structural performance of the circular anchorage proposed by the previous study. Specimens were fabricated according to KCI-PS101 and ETAG 013. As a result of the static load test, it was verified that the displacement of the wedge and the strand was kept constant when the tensile force of 80% of the nominal strength of the strand was applied. In the load transfer test, it was confirmed that all the specimens satisfied the stabilization formula of KCI-PS101 and ETAG 013. Post-tensioned one-way slab with circular anchorage were fabricated to evaluate the flexural behavior. All specimens exhibited the same flexural behavior and maximum load. However, the specimen with circular anchorage were advantageous than the rectangular anchorage one in terms of crack control of the anchorage zone.

Experimental study on fatigue behavior of innovative hollow composite bridge slabs

  • Yang Chen;Zhaowei Jiang;Qing Xu;Chong Ren
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.745-757
    • /
    • 2023
  • In order to study the fatigue performance of the flat steel plate-lightweight aggregate concrete hollow composite bridge slab subjected to fatigue load, both static test on two specimens and fatigue test on six specimens were conducted. The effects of the arrangement of the steel pipes, the amplitude of the fatigue load and the upper limit as well as lower limit of fatigue load on failure performance were investigated. Besides, for specimens in fatigue test, strains of the concrete, residual deflection, bending stiffness, residual bearing capacity and dynamic response were analyzed. Test results showed that the specimens failed in the fracture of the bottom flat steel plate regardless of the arrangement of the steel pipes. Moreover, the fatigue loading cycles of composite slab were mainly controlled by the amplitude of the fatigue load, but the influences of upper limit and lower limit of fatigue load on fatigue life was slight. The fatigue life of the composite bridge slabs can be determined by the fatigue strength of bottom flat steel plate, which can be calculated by the method of allowable stress amplitude in steel structure design code.

Experimental Study on the Composite Bridge Deck of Hollow Section (중공단면 복합소재 교량 바닥판의 시험을 통한 구조적 특성 분석)

  • Lee, Sung-Woo;Kim, Byung-Suk;Hong, Kee-Jeung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.325-335
    • /
    • 2006
  • In this paper, flexural test, girder-connection test and barrier-connection test for the pultruded composite bridge deck of hollow section, were carried out and its structural characteristics were evaluated. In the flexural test specimen, deflection was measured at center of the span and strains were measured at various locations to see the structural behavior up to the failure. In addition, finite element analysis was performed for the flexural test specimen and the results were compared with experiments, and load carrying capacity was evaluated. Also, field load test was conducted for the demonstration plate girder bridge and other field applications were described.

Study on large tonnage pile foundation load test system and field test of long rock-socketed pile

  • Zhang, Xue-feng;Ni, Ying-sheng;Song, Chun-xia;Xu, Dong
    • Geomechanics and Engineering
    • /
    • v.21 no.6
    • /
    • pp.565-570
    • /
    • 2020
  • Large tonnage pile foundation load test system is designed in this paper by using pre-stressed technique to optimize the design of anchor pile reaction beam system, in which project pile can be successfully taken as anchor pile. The test results show that the cracks and excessive deformations of the prestressed anti-force device designed in this study have not occurred, and the prestressed tendons of the anchor pile ensure that the anchor pile will not be pulled and fractured, and the prestressed tendons can be reused, thus ensuring the safety and reliability of the test. This test method can directly test bearing capacity of long rock-socketed piles, and analysis bearing behaviors from test results of sensors which embedded in the pile. Through test studied, authors summarized the vertical bearing characteristics of long rock-socketed piles and the main problems that should be paid attention to during design and construction, and provided reliable solutions.