• 제목/요약/키워드: load superposition

검색결과 94건 처리시간 0.028초

다물체계내 유연체의 구조기인 소음해석 (Structure Borne Noise Analysis of a Flexible Body in Multibody System)

  • 김효식;김창부
    • 한국소음진동공학회논문집
    • /
    • 제13권11호
    • /
    • pp.882-889
    • /
    • 2003
  • This paper presents the method for structure borne noise analysis of a flexible body in multibody system. The proposed method is the superposition method using the flexible multibody dynamic analysis and the finite element one. This method is executed in 3 steps. In the 1st step, time dependent quantities such as dynamic loads, modal coordinates and gross body motion of the flexible body are calculated through a flexible multibody dynamic analysis. And frequency response functions of those time dependent quantities are computed through Fourier transforms. In the 2nd step, acoustic pressure coefficients are obtained through structure-acoustic coupling analyses by the finite element method. In the final step, frequency responses of acoustic pressure at the acoustic nodes are recovered through linear superposition of frequency response functions with acoustic pressure coefficients. The accuracy of the proposed method is verified in the numerical example of a simple car model.

Dynamic response of railway bridges traversed simultaneously by opposing moving trains

  • Rezvani, Mohammad Ali;Vesali, Farzad;Eghbali, Atefeh
    • Structural Engineering and Mechanics
    • /
    • 제46권5호
    • /
    • pp.713-734
    • /
    • 2013
  • Bridges are vital components of the railroads. High speed of travel, the periodic and oscillatory nature of the loads and the comparable vehicle bridge weight ratio distinguish the railway bridges from the road bridges. The close proximity between estimations by some numerical methods and the measured data for the bridge-vehicle dynamic response under the moving load conditions has boosted the confidence in the numerical analyses. However, there is hardly any report regarding the responses of the railway bridges under the effect of the trains entering from the opposite directions while running at unequal speed and having dissimilar geometries. It is the purpose of this article to present an analytical method for the dynamic analysis of the railway bridges under the influence of two opposing series of moving loads. The bridge structural damping and many modes of vibrations are included. The concept of modal superposition is used to solve for the system motion equations. The method of solution is indeed a computer assisted analytical solution. It solves for the system motion equations and gives output in terms of the bridge deflection. Some case studies are also considered for the validation of the proposed method. Furthermore, the effects of varying some parameters such as the distance between the bogies, and the bogie wheelset distance are studied. Also, the conditions of resonance and cancellation in the dynamic response for a variety of vehicle-bridge specifications are investigated.

가상 시험 모델을 이용한 군용 대형트럭의 내구해석 (Durability Analysis of a Large-sized Military Truck Using Virtual Test Lab)

  • 서권희;송부근;임현빈;장헌섭;오철조;유웅재
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.57-64
    • /
    • 2011
  • In general, the durability performance of a large-sized military truck has been checked through a field durability test which required many man-hours and costs. To reduce these expenses, the durability analysis using a VTL(Virtual Test Lab) at an initial design stage was introduced recently. In this paper, the VTL with a multi-post testrig template for a large-sized truck was developed to compute the load histories transferred to cabin and chassis frame. The VTL consisted of trimmed FE models of cabin, chassis frame, and deck, dynamic models of front and rear suspensions, and a 8-post testrig template. The basic characteristics of the VTL were correlated with experimental results which had been extracted from actual driving test, modal test, and static weight test. The fatigue analysis using MSM(Modal Superposition Method) was applied to evaluate the durability performance of a large-sized military truck. From a series of analytic methods, it is shown that the fatigue analysis process using the VTL could be a useful tool to estimate the fatigue lives and weak areas of a large-sized military truck.

분포하중(分布荷重)을 받는 구형판(矩形板)의 탄성해석(彈性解析) (Analysis of Rectangular Plates under Distributed Loads of Various Intensity with Interior Supports at Arbitrary Positions)

  • 장석윤
    • 대한조선학회지
    • /
    • 제13권1호
    • /
    • pp.17-23
    • /
    • 1976
  • Some methods of analysis of rectangular plates under distributed load of various intensity with interior supports are presented herein. Analysis of many structures such as bottom, side shell, and deck plate of ship hull and flat slab, with or without internal supports, Floor systems of bridges, included crthotropic bridges is a problem of plate with elastic supports or continuous edges. When the four edges of rectangular plate is simply supported, the double Fourier series solution developed by Navier can represent an exact result of this problem. If two opposite edges are simply supported, Levy's method is available to give an "exact" solution. When the loading condition and supporting condition of a plate does not fall into these cases, no simple analytic method seems to be feasible. Analysis of a simply supported rectangular plate under irregularly distributed loads of various intensity with internal supports is carried out by applying Navier solution well as the "Principle of Superposition." Finite difference technique is used to solve plates under irregularly distributed loads of various intensity with internal supports and with various boundary conditions. When finite difference technique is applied to the Lagrange's plate bending equation, any of fourth order derivative term in this equation produces at least five pivotal points leading to some troubles when the resulting linear algebraic equations are to be solved. This problem was solved by reducing the order of the derivatives to two: the fourth order partial differential equation with one dependent variable, namely deflection, is changed to an equivalent pair of second order partial differential equations with two dependent variables. Finite difference technique is then applied to transform these equations to a set of simultaneous linear algebraic equations. Principle of Superposition is then applied to handle the problems caused by concentrated loads and interior supports. This method can be used for the cases of plates under irregularly distributed loads of various intensity with arbitrary conditions such as elastic supports, or continuous edges with or without interior supports, and this method can also be solve the influence values of deflection, moment and etc. at arbitrary position of plates under the live load.

  • PDF

강상형 철도교의 동특성 및 안정성 연구 (Study on Dynamic Characteristics and Safety of Steel Box Railway Bridge)

  • 최권영;윤지홍;권구성;정원석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.1526-1532
    • /
    • 2011
  • Railway bridges are highly susceptible to resonance due to the equidistant axle load with constant speed of train. Thus, it is necessary to verify dynamic characteristics and quantities against dynamic guidelines. Recently, many newly developed bridge systems have been developed for medium span length between 30m and 40m. However, less variety of bridge systems are available for span length between 45m and 50m. Steel box girder is considered as an alternative for span length between 45m and 50m. This study is to investigate the dynamic properties and safety of steel box railway bridge. Modal properties are extracted and moving load analyses are performed using mode superposition method. The results are then compared to various standards.

  • PDF

Buckling of non-homogeneous orthotropic conical shells subjected to combined load

  • Sofiyev, A.H.;Kuruoglu, N.
    • Steel and Composite Structures
    • /
    • 제19권1호
    • /
    • pp.1-19
    • /
    • 2015
  • The buckling analysis is presented for non-homogeneous (NH) orthotropic truncated conical shells subjected to combined loading of axial compression and external pressure. The governing equations have been obtained for the non-homogeneous orthotropic truncated conical shell, the material properties of which vary continuously in the thickness direction. By applying Superposition and Galerkin methods to the governing equations, the expressions for critical loads (axial, lateral, hydrostatic and combined) of non-homogeneous orthotropic truncated conical shells with simply supported boundary conditions are obtained. The results are verified by comparing the obtained values with those in the existing literature. Finally, the effects of non-homogeneity, material orthotropy, cone semi-vertex angle and other geometrical parameters on the values of the critical combined load have been studied.

차체 구조물의 피로수명 예측을 위한 컴퓨터 시뮬레이션 방법에 관한 연구 (A Study on Computational Method for Fatigue Life Prediction of Vehicle Structures)

  • 이상범;박태원;박종성;이선병;임홍재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1883-1888
    • /
    • 2000
  • In this paper a computer aided analysis method is proposed for durability assessment in the early design stages using dynamic analysis, stress analysis and fatigue life prediction method. From dynamic analysis of a vehicle suspension system, dynamic load time histories of a suspension component are calculated. From the dynamic load time histories and the stress of the suspension component, a dynamic stress time history at the critical location is produced using the superposition principle. Using linear damage law and cycle counting method, fatigue life cycle is calculated. The predicted fatigue life cycle is verified by experimental durability tests.

  • PDF

계통 고조파와 분산형 전원의 상호작용 평가를 위한 고조파 모델에 관한 연구 (Source Model for Harmonic Interaction Analysis between Renewable Energy Generators and Power Distribution System)

  • 조성민;신희상;문원식;김재철
    • 전기학회논문지
    • /
    • 제60권4호
    • /
    • pp.733-738
    • /
    • 2011
  • As increase of nonlinear loads and renewable energy generators (REGs) being connected to power distribution system via inverters, the concern on harmonic problems have increased. Recently, the harmonics evaluation method considering TDD (Total Demand Distortion) is used to analyze the effect of harmonics from inverters on power distribution quality. Harmonic current sources are typically used for simulation of nonlinear load. Most inverter type for REGs is voltage source inverter (VSI). So, harmonic voltage sources are more suitable to analyze impact of renewable energy generator on harmonics problem in power distribution system. In this paper, we presented the circuit model to analyze interaction between harmonics from nonlinear load and REGs. We verified that the harmonic analysis using the proposed circuit model is more appropriate than the harmonics evaluation method considering TDD through case study using PSCAD/EMTDC.

Traffic-load-induced dynamic stress accumulation in subgrade and subsoil using small scale model tests

  • Tang, Lian Sheng;Chen, Hao Kun;Sun, Yin Lei;Zhang, Qing Hua;Liao, Hua Rong
    • Geomechanics and Engineering
    • /
    • 제16권2호
    • /
    • pp.113-124
    • /
    • 2018
  • Under repeated loading, the residual stresses within the subgrade and subsoil can accelerate the deformation of the road structures. In this paper, a series of laboratory cyclic loading model tests and small-scale model tests were conducted to investigate the dynamic stress response within soils under different loading conditions. The experimental results showed that a dynamic stress accumulation effect occurred if the soil showed cumulative deformation: (1) the residual stress increased and accumulated with an increasing number of loading cycles, and (2) the residual stress was superimposed on the stress response of the subsequent loading cycles, inducing a greater peak stress response. There are two conditions that must be met for the dynamic stress accumulation effect to occur. A threshold state exists only if the external load exceeds the cyclic threshold stress. Then, the stress accumulation effect occurs. A higher loading frequency results in a higher rate of increase for the residual stress. In addition to the superposition of the increasing residual stress, soil densification might contribute to the increasing peak stress during cyclic loading. An increase in soil stiffness and a decrease in dissipative energy induce a greater stress transmission within the material.

INTEGRITY ANALYSIS OF AN UPPER GUIDE STRUCTURE FLANGE

  • LEE, KI-HYOUNG;KANG, SUNG-SIK;JHUNG, MYUNG JO
    • Nuclear Engineering and Technology
    • /
    • 제47권6호
    • /
    • pp.766-775
    • /
    • 2015
  • The integrity assessment of reactor vessel internals should be conducted in the design process to secure the safety of nuclear power plants. Various loads such as self-weight, seismic load, flow-induced load, and preload are applied to the internals. Therefore, the American Society of Mechanical Engineers (ASME) Code, Section III, defines the stress limit for reactor vessel internals. The present study focused on structural response analyses of the upper guide structure upper flange. The distributions of the stress intensity in the flange body were analyzed under various design load cases during normal operation. The allowable stress intensities along the expected sections of stress concentration were derived from the results of the finite element analysis for evaluating the structural integrity of the flange design. Furthermore, seismic analyses of the upper flange were performed to identify dynamic behavior with respect to the seismic and impact input. The mode superposition and full transient methods were used to perform time-history analyses, and the displacement at the lower end of the flange was obtained. The effect of the damping ratio on the response of the flange was also evaluated, and the acceleration was obtained. The results of elastic and seismic analyses in this study will be used as basic information to judge whether a flange design meets the acceptance criteria.