• Title/Summary/Keyword: load distribution factors

Search Result 286, Processing Time 0.028 seconds

Estimating the Pollution Delivery Coefficient with Consideration of Characteristics Watershed Form and Pollution Load Washoff (유역형상과 오염부하배출 특성을 고려한 유달계수 산정)

  • Ha, Sung-Ryong;Park, Jung-Ha;Bae, Myung-Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.1
    • /
    • pp.79-87
    • /
    • 2007
  • The performance of a stream water quality analysis model depends upon many factors attributed to the geological characteristics of a watershed as well as the distribution behaviors of pollutant itself on a surface of watershed. Because the model run has to import the pollution load from the watershed as a boundary condition along an interface between a stream water body and a watershed, it has been used to introduce a pollution delivery coefficient to behalf of the boundary condition of load importation. Although a nonlinear regression model (NRM) was developed to cope with the limitation of a conventional empirical way, this an up-to-date study has also a limitation that it can't be applied where the pollution load washed off (assumed at a source) is less than that delivered (observed) in a stream. The objective of this study is to identify what causes the limitation of NRM and to suggest how we can purify the process to evaluate a pollution delivery coefficient using many field observed cases. As a major result, it was found what causes the pollution load delivered to becomes bigger than that assumed at the source. In addition, the pollution load discharged to a stream water body from a specific watershed was calculated more accurately.

Resistance Model for Reliability Analysis of Existing Steel Girder Bridges (강거더 교량의 신뢰성해석을 위한 저항모델 개발)

  • Eom, Jun Sik
    • Journal of Applied Reliability
    • /
    • v.13 no.4
    • /
    • pp.241-252
    • /
    • 2013
  • Because of financial and safety concerns, there are needs for more accurate prediction of bridge behavior. Underestimation of the bridge load carrying capacity can have serious economic consequences, as deficient bridges must be repaired or rehabilitated. Therefore, the knowledge of the actual bridge behavior under live load may lead to a more realistic calculation of the load carrying capacity and eventually this may allow for more bridges to remain in service with or without minor repairs. The presented research is focused on the reliability evaluation of the actual load carrying capacity of existing bridges based on the field testing. Seventeen existing bridges were tested under truck load to confirm their adequacy of reliability. The actual response of existing bridge structures under live load is measured. Reliability analysis is performed on the selected representative bridges designed in accordance with AASHTO codes for bridge component (girder). Bridges are first evaluated based on the code specified values and design resistance. However, after the field testing program, it is possible to apply the experimental results into the bridge reliability evaluation procedures. Therefore, the actual response of bridge structures, including unintentional composite action, partial fixity of supports, and contribution of nonstructural members are considered in the bridge reliability evaluation. The girder distribution factors obtained from the tests are also applied in the reliability calculation. The results indicate that the reliability indices of selected bridges can be significantly increased by reducing uncertainties without sacrificing the safety of structures, by including the result of field measurement data into calculation.

Numerical study of concrete-encased CFST under preload followed by sustained service load

  • Li, Gen;Hou, Chao;Han, Lin-Hai;Shen, Luming
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.93-109
    • /
    • 2020
  • Developed from conventional concrete filled steel tubular (CFST) members, concrete-encased CFST has attracted growing attention in building and bridge practices. In actual construction, the inner CFST is erected prior to the casting of the outer reinforced concrete part to support the construction preload, after which the whole composite member is under sustained service load. The complex loading sequence leads to highly nonlinear material interaction and consequently complicated structural performance. This paper studies the full-range behaviour of concrete-encased CFST columns with initial preload on inner CFST followed by sustained service load over the whole composite section. Validated against the reported data obtained from specifically designed tests, a finite element analysis model is developed to investigate the detailed structural behaviour in terms of ultimate strength, load distribution, material interaction and strain development. Parametric analysis is then carried out to evaluate the impact of significant factors on the structural behaviour of the composite columns. Finally, a simplified design method for estimating the sectional capacity of concrete-encased CFST is proposed, with the combined influences of construction preload and sustained service load being taken into account. The feasibility of the developed method is validated against both the test data and the simulation results.

A Study on the Ultimate Strength Behaviour According to the Boundary Condition of a Plate under Thrust (면내하중을 받는 판의 경계조건에 따른 최종강도거동에 관한 연구)

  • 고재용;박주신;최익창;이계희
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.557-564
    • /
    • 2002
  • One of the primary factors like plate structure In ship is redundancy structure that is comparable with ocean structure and frame structure. The more component material becomes buckling collapsed locally the less structure stiffness becomes accordingly. As a result, by increasing the load distribution of any other subsidiary structure continually component member collapses, therefore the structure could be in danger of collapse. So, in order to interpret this phenomenon precisely, the study on boundary condition of the ship's Plate and post-buckling analysis must be considered. In this study, the rectangular plate is compressed by the in-plane load. Buckling & Ultimate strength characteristics we applied to be the elasto-plasticity large deformation by F.E.M. On this basis, elasto-plasticity of the plain plate are investigated. This study proved elasto-plasticity behaviour of tile ship's plate In accordance with boundary condition based on the series analysis In case of the compressive load operation.

  • PDF

Seismic Fragility Evaluation of Cable Supported Bridges Based on Probability Distribution Using Safety Factors of Structural Members (안전율 확률분포에 근거한 케이블지지교량 주요부재의 내진성능 취약도 평가)

  • Park, Jin-Woo;Kim, Chang-Sung;Kim, Doo-Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.37-44
    • /
    • 2019
  • The purpose of this study is to rationally determine the priority of seismic reinforcement of main(key) members of bridges. Cable Supported bridge was selected as the evaluation target and the reliability based on the probability distribution was used to evaluate the seismic fragility of the key members as a quantitative indicator. The safety factor, which is a random variable, is considered an artificial (fixed load and live load) load and a natural (earthquake, wind, temperature, etc.) load. The seismic load is applied as a possible earthquake during the lifetime of the bridge. From analyzing the fragility of each key member based on the seismic reliability, it can be concluded that the shoe (23.8%) was the most fragile, where the other members are ranked as place concrete (20.5%), pier (18.9%), foundation (17.3%) and cable (5.0%) respectively.

Simulation Technique for Estimation of Extreme Traffic Load Effects on Bridges (도로교 최대차량하중효과 분석을 위한 모의해석기법)

  • Hwang, Hak Joo;Kim, Sang Hyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.77-86
    • /
    • 1993
  • Recently it is reported in many countries that highway bridges are seriously damaged due to increasing volume of overloaded heavy vehicles. The safety of bridges are highly related to the design load level and the characteristics of extreme load effect induced by traffic loads during its lifetime. The maximum structural load effect during lifetime may be produced by simultaneous loading of trucks with moderate weights on a bridge rather than by single loading of extremely heavy trucks. In this study, a simulation technique to estimate extreme load effect due to traffic loadings has been developed, in which important characteristics of traffic loadings, such as heavy vehicle proportion, traffic mode, vehicle weights, headway distribution. daily traffic volume, etc., should be properly considered. In addition. sensitivity analysis on those factors have been performed.

  • PDF

Stress intensity factors for periodic edge cracks in a semi-infinite medium with distributed eigenstrain

  • Afsar, A.M.;Ahmed, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.1
    • /
    • pp.67-82
    • /
    • 2005
  • This study analyzes stress intensity factors for a number of periodic edge cracks in a semiinfinite medium subjected to a far field uniform applied load along with a distribution of eigenstrain. The eigenstrain is considered to be distributed arbitrarily over a region of finite depth extending from the free surface. The cracks are represented by a continuous distribution of edge dislocations. Using the complex potential functions of the edge dislocations, a simple as well as effective method is developed to calculate the stress intensity factor for the edge cracks. The method is employed to obtain the numerical results of the stress intensity factor for different distributions of eigenstrain. Moreover, the effect of crack spacing and the intensity of the normalized eigenstress on the stress intensity factor are investigated in details. The results of the present study reveal that the stress intensity factor of the periodic edge cracks is significantly influenced by the magnitude as well as distribution of the eigenstrain within the finite depth. The eigenstrains that induce compressive stresses at and near the free surface of the semi-infinite medium reduce the stress intensity factor that, in turn, contributes to the toughening of the material.

An Experimental Study on Ram Pressure and THD Performance of Pivoted Pad Thrust Bearing (피봇식 주력베어링의 선단압력과 THD성능에 관한 실험적 연구)

  • 박홍규;김경웅
    • Tribology and Lubricants
    • /
    • v.2 no.1
    • /
    • pp.61-68
    • /
    • 1986
  • Effects of the ram-pressure on the THD-performance of pivoted pad thrust bearings are investigated experimentally. A sector-shaped tilting pad thrust bearing and a rotating disk are used. Temperature distribution on the disk surface as well as on the pad surface, distribution of the pressure generated within the fluid film, and the film thickness are measured continuously in the circumferential direction after thermal equilibrium is established. The ram-pressure is proportional to the mean pressure of oil film and to the rotational speed of the disk and affects the maximum pressure and the pressure distribution. The temperature rise on the mating surface of the disc and the pad, contacting with the oil film, is proportional to to the bearing load and the disk speed. The ram-pressure and the temperature rise on the disk surface are dominant factors that affect the THD-performance of pivoted pad thrust bearings.

Reliability Evaluation of Electrical Distribution Network Containing Distributed Generation Using Directed-Relation-Graph

  • Yang, He-Jun;Xie, Kai-Gui;Wai, Rong-Jong;Li, Chun-Yan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1188-1195
    • /
    • 2014
  • This paper presents an analytical technique for reliability evaluation of electrical distribution network (EDN) containing distributed generation (DG). Based on hierarchical levels of circuit breaker controlling zones and feeder sections, a directed-relation-graph (DRG) for an END is formed to describe the hierarchical structure of the EDN. The reliability indices of EDN and load points can be evaluated directly using the formed DRG, and the reliability evaluation of an EDN containing DGs can also be done without re-forming the DRG. The proposed technique incorporates multi-state models of photovoltaic and diesel generations, as well as weather factors. The IEEE-RBTS Bus 6 EDN is used to validate the proposed technique; and a practical campus EDN containing DG was also analyzed using the proposed technique.

Mechanical and Environment Ability of FRP Pole for a Distribution Line (배전용 FRP전주의 기계적 및 환경성능)

  • 박기호;조한구;한동희;이웅선;송일근
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.395-398
    • /
    • 2000
  • In this study mechanical and environment ability of FRP pole for a distribution line about high strength and good insulation properties. The basic filament winding process creates a helical winding pattern. In mechanical analysis of splice with mechanical fastened joint it is important to evaluate a critical load of faster having maximum stress. It is also present a result of several examples to compare this with analytical one. On repair design this finite element method will be used as basis. The influence of environmental factors, such as elevated temperatures, high humidity, and corrosive fluids, and ultraviolet(UV) rays, upon the performance of polymeric matrix composite is of concern in many applications.

  • PDF