Browse > Article
http://dx.doi.org/10.12989/scs.2020.35.1.093

Numerical study of concrete-encased CFST under preload followed by sustained service load  

Li, Gen (School of Civil Engineering, The University of Sydney)
Hou, Chao (Department of Ocean Science and Engineering, Southern University of Science and Technology)
Han, Lin-Hai (Department of Civil Engineering, Tsinghua University)
Shen, Luming (School of Civil Engineering, The University of Sydney)
Publication Information
Steel and Composite Structures / v.35, no.1, 2020 , pp. 93-109 More about this Journal
Abstract
Developed from conventional concrete filled steel tubular (CFST) members, concrete-encased CFST has attracted growing attention in building and bridge practices. In actual construction, the inner CFST is erected prior to the casting of the outer reinforced concrete part to support the construction preload, after which the whole composite member is under sustained service load. The complex loading sequence leads to highly nonlinear material interaction and consequently complicated structural performance. This paper studies the full-range behaviour of concrete-encased CFST columns with initial preload on inner CFST followed by sustained service load over the whole composite section. Validated against the reported data obtained from specifically designed tests, a finite element analysis model is developed to investigate the detailed structural behaviour in terms of ultimate strength, load distribution, material interaction and strain development. Parametric analysis is then carried out to evaluate the impact of significant factors on the structural behaviour of the composite columns. Finally, a simplified design method for estimating the sectional capacity of concrete-encased CFST is proposed, with the combined influences of construction preload and sustained service load being taken into account. The feasibility of the developed method is validated against both the test data and the simulation results.
Keywords
concrete-encased CFST; construction preload; sustained service load; numerical analysis; sectional capacity;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Han, L.H. and Yao, G.H. (2003), "Behaviour of concrete-filled hollow structural steel (HSS) columns with pre-load on the steel tubes", J. Constr. Steel Res., 59(12), 1455-1475. https://doi.org/10.1016/S0143-974X(03)00102-0.   DOI
2 Han, L.H., Li, Y.J. and Liao, F.Y. (2011), "Concrete-filled double skin steel tubular (CFDST) columns subjected to long-term sustained loading". Thin-Wall. Struct., 49(12), 1534-1543. https://doi.org/10.1016/j.tws.2011.08.001.   DOI
3 Han, L.H., Yao, G.H. and Tao, Z. (2007), "Performance of concrete-filled thin-walled steel tubes under pure torsion". Thin-Wall. Struct., 45(1), 24-36. https://doi.org/10.1016/j.tws.2007.01.008.   DOI
4 Han, L.H., Tao, Z. and Liu, W. (2004), "Effects of sustained load on concrete-filled hollow structural steel columns", J. Struct. Eng., 130(9), 1392-1404. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:9(1392).   DOI
5 Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6(6), 773-782. https://doi.org/10.1016/0008-8846(76)90007-7.   DOI
6 Ichinose, L.H., Watanabe, E. and Nakai, H. (2001), "An experimental study on creep of concrete filled steel pipes". J. Constr. Steel Res., 57(4), 453-466. https://doi.org/10.1016/S0143-974X(00)00021-3.   DOI
7 Kang, L., Leon, R.T. and Lu, X.L. (2015), "Shear strength analyses of internal diaphragm connections to CFT columns", Steel Compos. Struct., 18(5), 1083-1101. https://doi.org/10.12989/scs.2015.18.5.1083.   DOI
8 Lam, D. and Williams, C.A. (2004), "Experimental study on concrete filled square hollow sections", Steel Compos. Struct., 4(2), 95-112. https://doi.org/10.12989/scs.2004.4.2.095.   DOI
9 Li, S., Han, L.H. and Hou, C. (2018), "Concrete-encased CFST columns under combined compression and torsion: Analytical behaviour", J. Constr. Steel Res., 144, 236-252. https://doi.org/10.1016/j.jcsr.2018.01.020.   DOI
10 Li, Y.J., Li, G., Hou, C. and Zhang, W.J. (2019), "Long-term experimental behaviour of concrete-encased CFST with preload on the inner CFST", J. Constr. Steel Res., 155, 355-369. https://doi.org/10.1016/j.jcsr.2019.01.001.   DOI
11 Li, W., Han, L.H. and Zhao, X.L. (2015), "Behavior of CFDST stub columns under preload, sustained load and chloride corrosion", J. Constr. Steel Res., 107, 12-23. https://doi.org/10.1016/j.jcsr.2014.12.023.   DOI
12 Li, W., Han, L.H. and Zhao, X.L. (2012), "Axial strength of concrete-filled double skin steel tubular (CFDST) columns with preload on steel tubes", Thin-Wall. Struct., 56, 9-20. https://doi.org/10.1016/j.tws.2012.03.004.   DOI
13 Liew, J.Y.R. and Xiong, D.X. (2009), "Effect of preload on the axial capacity of concrete-filled composite columns", J. Constr. Steel Res., 65(3), 709-722. https://doi.org/10.1016/j.jcsr.2008.03.023.   DOI
14 Ma, D.Y., Han, L.H. and Zhao, X.L. (2019), "Seismic performance of concrete-encased CFST column to RC beam joint: Experiment", J. Constr. Steel Res., 154, 134-148. https://doi.org/10.1016/j.jcsr.2018.11.030.   DOI
15 Ma, D.Y., Han, L.H., Li, W. and Zhao, X.L. (2018a), "Seismic performance of concrete-encased CFST piers: analysis", J. Bridge Eng., 23(1), 04017119. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001157.   DOI
16 ABAQUS (2016), ABAQUS Standard User's Manual, version 6.16. Providence, RI, (USA): Dassault Systemes Corp.
17 Ma, D.Y., Han, L.H., Li, W., Hou, C. and Mu, T.M. (2018b), "Behaviour of concrete-encased CFST stub columns subjected to long-term sustained loading", J. Constr. Steel Res., 151, 58-69. https://doi.org/10.1016/j.jcsr.2018.09.016.   DOI
18 Roeder, C.W., Cameron, B. and Brown, C.B. (1999), "Composite action in concrete filled tubes", J. Struct. Eng., 125(5), 477-484. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:5(477).   DOI
19 Uy, B. and Das, S. (1997), "Wet concrete loading of thin-walled steel box columns during the construction of a tall building"., J. Constr. Steel Res., 42, 95-119. https://doi.org/10.1016/S0143-974X(97)00022-9.   DOI
20 Attard, M. and Setunge, S. (1996), "Stress-strain relationship of confined and unconfined concrete", ACI Mater. J., 93(5), 432-442. https://doi.org/10.1016/j.engstruct.2012.03.027.
21 Zhang, Y.Y., Pei, J.N., Hunag, Y., Lei, K., Song, J. and Zhang, Q.L. (2018), "Seismic behaviors of ring beams joints of steel tube-reinforced concrete column structure", Steel Compos. Struct., 27(4), 417-426. https://doi.org/10.12989/scs.2018.27.4.417.   DOI
22 Varma, A.H., Ricles, J.M., Sause, R. and Lu, L.W. (2002), "Experimental behavior of high strength square concrete-filled steel tube beam-columns", J. Struct. Eng. - ASCE, 128(3), 309-318. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:3(309).   DOI
23 Wu, X.G., Zhao, X.Y. and Han, S.M. (2012), "Structural analysis of circular UHPCC form for hybrid pier under construction loads", Steel Compos. Struct., 12(2), 167-181. https://doi.org/10.12989/scs.2012.12.2.167.   DOI
24 Yang, M.G., Cai, C.S. and Chen, Y. (2015), "Creep performance of concrete-filled steel tubular (CFST) columns and applications to a CFST arch bridge", Steel Compos. Struct., 19(1), 111-129. https://doi.org/10.12989/scs.2015.19.1.111.   DOI
25 Zhou, K. and Han, L.H. (2018), "Experimental performance of concrete-encased CFST columns subjected to full-range fire including heating and cooling", Eng. Struct., 165, 331-348. https://doi.org/10.1016/j.engstruct.2018.03.042.   DOI
26 Chu, K.H. and Carreira, D.J. (1986), "Time-dependent cyclic deflection in R/C beams", J. Struct. Eng., 112(5), 943-959. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:5(943).   DOI
27 Campian, C., Nagy, Z. and Pop, M. (2015), "Behavior of fully encased steel-concrete composite columns subjected to monotonic and cyclic loading", Procedia Eng., 117, 439-451. https://doi.org/10.1016/j.proeng.2015.08.193.   DOI
28 CECS 188:2005 (2005), Technical specification for steel tube-reinforced concrete column structure, China Association for Engineering Construction Standardization; Beijing, China.
29 Chen, Z.Y., Zhao, G.F., Yi, W.J. and Lin, L.Y. (2002), "Experimental research on behavior of high strength concrete column reinforced with concrete-filled steel tube under axial compression", J. Dalian Univ. Technol., 45(5), 687-691. [in Chinese]   DOI
30 DBJ/T13-51-2010 (2010), Technical specification for concrete-filled steel tubular structures, The Construction Department of Fujian Province; Fuzhou, China. [in Chinese]
31 Eurocode 2 (2004), Design of concrete structures-part 1-1: general rules and rules for buildings, European Committee for Standardization; Brussels, Belgium.
32 Han, L.H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Constr. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016.   DOI
33 Han, L.H. and An, Y.F. (2014), "Performance of concrete-encased CFST stub columns under axial compression", J. Constr. Steel Res., 93, 62-76. https://doi.org/10.1016/j.jcsr.2013.10.019.   DOI
34 Han, L.H., Wang, Z.B., Xu, W. and Tao, Z. (2016), "Behaviour of concrete-encased CFST members under axial tension", J. Struct. Eng. - ASCE, 142(2). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001422.