• Title/Summary/Keyword: load cycling

Search Result 71, Processing Time 0.029 seconds

Stress-Strain Behavior of the Electrospun Thermoplastic Polyurethane Elastomer Fiber Mats

  • Lee Keunhyung;Lee Bongseok;Kim Chihun;Kim Hakyong;Kim Kwanwoo;Nah Changwoon
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.441-445
    • /
    • 2005
  • Thermoplastic polyurethane elastomer (TPUe) fiber mats were successfully fabricated by electrospinning method. The TPUe fiber mats were subjected to a series of cycling tensile tests to determine the mechanical behavior. The electrospun TPUe fiber mats showed non-linear elastic and inelastic characteristics which may be due to slippage of crossed fiber (non-bonded or physical bonded structure) and breakage of the electro spun fibers at junctions (point-bonded or chemical bonding structure). The scanning electron microscopy (SEM) images demonstrated that the point-bonded structures of fiber mats played an important role in the load-bearing component as determined in loading-unloading component tests, which can be considered to have a force of restitution.

Thermal Shock Resistance of Bilayered YSZ Thermal Barrier Coating

  • Lee, Dong Heon;Kim, Tae Woo;Lee, Kee Sung;Kim, Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.452-460
    • /
    • 2018
  • This study investigate changes in mechanical behaviors such as indentation load-displacement and hardness of thermal barrier coatings (TBCs) using cycling of thermal shock test. Relatively dense and porous TBCs on nickel-based bondcoat/super alloy are prepared using different starting granules, 204C-NS and 204NS commercial powers, and the effect of double layers of 204C-NS on 204NS and 204NS on 204C-NS are investigated. The highest temperature applied during thermal shock test is $1100^{\circ}C$ and the maximum number of cycles is 1,200. The results indicate that bilayered TBC showed a relatively mechanically resistant property during thermal shock cycles and that the mechanical behavior is influenced by the microstructure of TBCs by exposure to high temperature during tests or different starting granules.

An Charge-Recycling Technique with Dual Outputs for Field Color Sequential applied in the RGB LED Backlight

  • Yang, Chih-Yu;Hsieh, Chun-Yu;Chen, Ke-Horng
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1088-1091
    • /
    • 2009
  • A boost converter with charge-recycling technique fabricated by $0.25{\mu}m$ CMOS BCD process can provide different supply voltages to drive series RGB LEDs in sequence for reducing the power consumption on the constant current generator. The proposed technique stores and restores extra energy to improve the efficiency, as well as enhances the reference tracking response. Experimental results show that the period of reference-tracking response can be improved. When the load current is 100mA, the periods of reference down-tracking and uptracking are smaller than $10{\mu}s$ and $20{\mu}s$, respectively. Experimental results demonstrate fast and efficient reference tracking performance is achieved.

  • PDF

Cycling of Matters in the Constructed Wetland (인공습지에서의 물질순환에 관한 연구)

  • Kim, Dong-Oug;Park, Je-Chul
    • Journal of Environmental Science International
    • /
    • v.29 no.3
    • /
    • pp.299-306
    • /
    • 2020
  • This study analyzed the changes in the concentrations of the pollutants of constructed treatment wetlands which come from the discharge water of a sewage treatment plant. According to the results of budgets in constructed wetlands, the net production of the organic carbon, nitrogen and phosphorus were 368 kgC/month, 306 kgN/month and -49 kgP/month, respectively. The high particle form of pollutants are mostly removed due to settlement and absorption when passing through wetlands, but because a low processing efficiency for pollutants was shown when sewage treatment plant wastewater flows in, there is a need for a water management system that can reduce the organic matter load through monitoring. The low removal efficiency of constructed wetlands were caused by both structural and operational problems. Therefore, to enable to play a role as a reduction facility of pollutants, an appropriate design and operation manuals for constructed wetlands is urgently needed.

Sealing Integrity of polymeric ZnO Surge Arresters (고분자 피뢰기의 기밀특성에 관한 연구)

  • Liang, He-Jin;Han, Se-Won;Cho, Han-Goo;Kim, In-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.258-261
    • /
    • 1997
  • The sealing integrity is related to the safe operation of arrester the prime failure reason of porcelain housed arresters is moisture ingress. To be a meaningful tests a polymer arrester sealing test must be a realistic acceleration of field service. We think the test should be an accelerating course of actual temperatures, the enduring property to mechanical load and temperatures should be considered together. A union test method consisting of the thermal mechanical test and thermal cycling test is proposed to test the sealing integrity of polymeric arresters, which uses dielectric loss, leakage current 1mA DC voltage and partial discharge as the diagnostic techniques, and the test results were presented. The comparison states that the TMTCUT method is suitable fur the test of sealing integrity of polymeric arresters. .

  • PDF

A Study on the Shape Memory Characteristic Behaviors of Ti-42.5at%Ni-10at.% Cu Alloys (Ti-42.5at.%Ni-10at.%Cu합금의 형상기억특성에 관한 연구)

  • Woo, Heung-Sik;Park, Yong-Gyu
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.1
    • /
    • pp.26-30
    • /
    • 2009
  • Shape memory recoverable stress and strain of Ti-42.5at%Ni-10at%Cu alloys were measured by means of constant temperature tensile tests. The alloys' transformation behavior is B2 - B19 by DSC result. The strain by tensile stress were perfectly recovered by heating at any testing conditions but shape memory recoverable stress increased to 66MPa and then slightly decreased. Transformation temperatures from thermal cycling under constant uniaxial applied tensile loads linearly increased by increasing tensile load and their thermal hysteresis are about 110K and their maximum recoverable strain is 6.5% at 100MPa condition.

Analysis of Lower-Limbs Muscle Activity during Cycle Exercise in Spine Position (누운 자세에서의 자전거 운동 시 하지 근활성도 분석)

  • Shin, S.H.;Yu, M.;Cho, K.S.;Jeong, H.C.;Hong, J.P.;Hong, C.W.;Kwon, T.K.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.4
    • /
    • pp.331-337
    • /
    • 2015
  • This research was to develop the cycling system of lower limbs for rehabilitation during cycle exercise in supine position. Also we analyzed the muscular activity of lower-limbs at various exercise conditions according to exercise mode, load, velocity. 42 healthy subjects(ages 20-60 years) were participated. We measured the muscular activities of right lower limb muscle in rectus femoris, biceps femoris, tibialis anterior, medial gastrocnemius, soleus. Results, medial gastrocnemius shows high value on load 10 stage than load 1 and 5 stage. And all muscular activity except medial gastrocnemius was decreased as increase of velocity. We have found that there is a difference of lower limbs activity depending on exercise mode and method. This study could be applied to reference data to develop cycle system of lower limbs for rehabilitation.

  • PDF

In-situ Determination of Structural Changes in Polyethylene upon Creep and Cyclic Fatigue Loading (크리프와 반복 피로하중에 의한 폴리에틸렌의 실시간 구조 변화)

  • Jeon, Hye-Jin;Ryu, Seo-Kgn;Pyo, Soo-Ho;Choi, Sun-Woong;Song, Hyun-Hoon
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.88-92
    • /
    • 2012
  • Long-term performance of polymer under constant sustained load has been the main research focus, which created a need for the accelerated test method providing proper lifetime assessment. Cycling fatigue loading is one of the accelerated test method and has been of great interest. Microstructure change of high density polyethylene under cyclic fatigue loading and creep was examined utilizing a tensile device specially designed for creep and fatigue test and also can be attachable to the X-ray diffractometer. In this way, the crystal morphology change of polyethylene under creep and cyclic fatigue load was successfully monitored and compared. Despite the marked differences in macroscopic deformation between the creep and cyclic fatigue tests, crystal morphology such as crystallinity, crystal size, and $d$-spacing was as nearly identical between the two test cases. Specimens pre-deformed to different strains, i.e., before yield point (BYP), at yield point (YP) and after yield point (AYP), however, showed markedly different changes in crystal morphology, especially between AYP and the other two specimens.

Specimen Size Effect on Fatigue Properties of Surface-Micromachined Al-3%Ti Thin Films (Al-3%Ti 박막의 피로성질에 대한 시편 크기 영향)

  • Park, Jun-Hyub;Myung, Man-Sik;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1708-1711
    • /
    • 2007
  • This paper presents high cycle fatigue properties of an Al-3%Ti thin film, used in a RF (radio-frequency) MEMS switch for a mobile phone and also describes new test method for obtaining static and dynamic characteristics of thin film and reliability evaluation method on MEMS device with thin film developed by authors. Durability should be ensured for such devices under cycling load. Therefore, with the proposed specimen and test procedure, tensile and fatigue tests were performed to obtain mechanical and fatigue properties. The specimen was made with dimensions of $1000{\mu}m$ long, $1.0{\mu}m$ thickness, and 3 kinds of width, 50, 100 and $150{\mu}m$. High cycle fatigue tests for each width were also performed, from which the fatigue strength coefficient and the fatigue strength exponent were found to be 193MPa and .0.02319 for $50{\mu}m$, 181MPa and -0.02001 for $100{\mu}m$, and 164MPa and -0.01322 for $150{\mu}m$, respectively. We found that the narrower specimen is, the longer fatigue life of Al-3%Ti is and the wider specimen is, the more susceptible to stress level fatigue life of Al-3%Ti was.

  • PDF

Suggestion of Long-term Life Time Test for PV Module in Highly Stressed Conditions (가혹조건에서의 태양전지모듈 내구성 평가를 통한 최적의 시험조건 제안)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Yoon, Soon-Gil
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.63-68
    • /
    • 2010
  • To guarantee life time more than 20 years for manufacturer without stopping photovoltaic(PV) system, it is really important to test the module in realistic time and condition compared to outside weather. In here, we tested PV modules in highly stressed condition compared to IEC standards. In IEC 61215 and IEC 61646 standards, damp-heat, thermal cycle(TC200) and mechanical test are main test items for evaluating long-term durability of PV module in controlled temperature and humidity condition. So in this paper, we have lengthened the test time for TC200 and damp-heat test and increased the loading stress on surface of module. Through this test, we can get some clue of proper the method for measuring realistic life cycle of PV modules and suggested the minimum time for PV test method. The detail description is specified as the following paper.