• Title/Summary/Keyword: lncRNA

Search Result 79, Processing Time 0.02 seconds

Non-Coding RNAs in Caenorhabditis elegans Aging

  • Kim, Sieun S.;Lee, Seung-Jae V.
    • Molecules and Cells
    • /
    • v.42 no.5
    • /
    • pp.379-385
    • /
    • 2019
  • Non-coding RNAs (ncRNAs) comprise various RNA species, including small ncRNAs and long ncRNAs (lncRNAs). ncRNAs regulate various cellular processes, including transcription and translation of target messenger RNAs. Recent studies also indicate that ncRNAs affect organismal aging and conversely aging influences ncRNA levels. In this review, we discuss our current understanding of the roles of ncRNAs in aging and longevity, focusing on recent advances using the roundworm Caenorhabditis elegans. Expression of various ncRNAs, including microRNA (miRNA), tRNA-derived small RNA (tsRNA), ribosomal RNA (rRNA), PIWI-interacting RNA (piRNA), circular RNA (circRNA), and lncRNA, is altered during aging in C. elegans. Genetic modulation of specific ncRNAs affects longevity and aging rates by modulating established aging-regulating protein factors. Because many aging-regulating mechanisms in C. elegans are evolutionarily conserved, these studies will provide key information regarding how ncRNAs modulate aging and lifespan in complex organisms, including mammals.

Long Noncoding RNA MHRT Protects Cardiomyocytes against H2O2-Induced Apoptosis

  • Zhang, Jianying;Gao, Caihua;Meng, Meijuan;Tang, Hongxia
    • Biomolecules & Therapeutics
    • /
    • v.24 no.1
    • /
    • pp.19-24
    • /
    • 2016
  • Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality worldwide. The exploration of new biomarkers with high sensitivity and specificity for early diagnosis of AMI therefore becomes one of the primary task. In the current study, we aim to detect whether there is any heart specific long noncoding RNA (lncRNA) releasing into the circulation during AMI, and explore its function in the neonatal rat cardiac myocytes injury induced by $H_2O_2$. Our results revealed that the cardiac-specific lncRNA MHRT (Myosin Heavy Chain Associated RNA Transcripts) was significantly elevated in the blood from AMI patients compared with the healthy control ($^*p<0.05$). Using an in vitro neonatal rat cardiac myocytes injury model, we demonstrated that lncRNA MHRT was upregulated in the cardiac myocytes after treatment with hydrogen peroxide ($H_2O_2$) via real-time RT-PCR (qRT-PCR). Furthermore, we knockdowned the MHRT gene by siRNA to confirm its roles in the $H_2O_2$-induced cardiac cell apoptosis, and found that knockdown of MHRT led to significant more apoptotic cells than the non-target control ($^{**}p<0.01$), indicating that the lncRNA MHRT is a protective factor for cardiomyocyte and the plasma concentration of MHRT may serve as a biomarker for myocardial infarction diagnosis in humans AMI.

Ginsenoside Rg3 and Korean Red Ginseng extract epigenetically regulate the tumor-related long noncoding RNAs RFX3-AS1 and STXBP5-AS1

  • Ham, Juyeon;Jeong, Dawoon;Park, Sungbin;Kim, Hyeon Woo;Kim, Heejoo;Kim, Sun Jung
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.625-634
    • /
    • 2019
  • Background: Ginsenoside Rg3, a derivative of steroidal saponins abundant in ginseng, has a range of effects on cancer cells, including anti-cell proliferation and anti-inflammation activity. Here, we investigate two long noncoding RNAs (lncRNAs), STXBP5-AS1 and RFX3-AS1, which are hypomethylated and hypermethylated in the promoter region by Rg3 in MCF-7 cancer cells. Methods: The lncRNAs epigenetically regulated by Rg3 were mined using methylation array analysis. The effect of the lncRNAs on the apoptosis and proliferation of MCF-7 cells was monitored in the presence of Rg3 or Korean Red Ginseng (KRG) extract after deregulating the lncRNAs. The expression of the lncRNAs and their target genes was examined using qPCR and Western blot analysis. The association between the expression of the target genes and the survival rate of breast cancer patients was analyzed using the Kaplan-Meier Plotter platform. Results: STXBP5-AS1 and RFX3-AS1 exhibited anti- and pro-proliferation effects, respectively, in the cancer cells, and the effects of Rg3 and KRG extract on apoptosis and cell proliferation were weakened after deregulating the lncRNAs. Of the genes located close to STXBP5-AS1 and RFX3-AS1 on the chromosome, STXBP5, GRM1, RFX3, and SLC1A1 were regulated by the lncRNAs on the RNA and protein level. Breast cancer patients that exhibited a higher expression of the target genes of the lncRNAs had a higher metastasis-free survival rate. Conclusion: The current study is the first to identify lncRNAs that are regulated by the presence of Rg3 and KRG extract and that subsequently contribute to inhibiting the proliferation of cancer cells.

Long Non-Coding RNA CCAT1 Acts as a Competing Endogenous RNA to Regulate Cell Growth and Differentiation in Acute Myeloid Leukemia

  • Chen, Lianxiang;Wang, Wei;Cao, Lixia;Li, Zhijun;Wang, Xing
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.330-336
    • /
    • 2016
  • Long non-coding RNAs (lncRNAs) are involved in multiple cellular events, as well as in tumorigenesis. Colon cance-rassociated transcript-1 (CCAT1) gene encodes an lncRNA whose over-activation was observed in an expanding list of primary human solid tumors and tumor cell lines, however its biological roles in acute myeloid leukaemia (AML) has not been reported yet at present. In this study, the aberrant upregulation of CCAT1 was detected in French-American-British M4 and M5 subtypes of adult AML patients. By gain- and loss-of-function analysis, we determined that CCAT1 repressed monocytic differentiation and promoted cell growth of HL-60 by sequestering tumor suppressive miR-155. Accordingly, a significant decrease in miR-155 level was detected in AML patients. Reintroduction of miR-155 into HL-60 cells restored monocytic maturation and repressed cell proliferation. Furthermore, CCAT1 could up-regulated c-Myc via its competing endogenous RNA (ceRNA) activity on miR-155. In conclusion, these results revealed new mechanism of lncRNA CCAT1 in AML development, and suggested that the manipulation of CCAT1 expression could serve as a potential strategy in AML therapy.

Knockdown of lncRNA PVT1 Inhibits Vascular Smooth Muscle Cell Apoptosis and Extracellular Matrix Disruption in a Murine Abdominal Aortic Aneurysm Model

  • Zhang, Zhidong;Zou, Gangqiang;Chen, Xiaosan;Lu, Wei;Liu, Jianyang;Zhai, Shuiting;Qiao, Gang
    • Molecules and Cells
    • /
    • v.42 no.3
    • /
    • pp.218-227
    • /
    • 2019
  • This study was designed to determine the effects of the long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) on vascular smooth muscle cell (VSMC) apoptosis and extracellular matrix (ECM) disruption in a murine abdominal aortic aneurysm (AAA) model. After injection of PVT1-silencing lentiviruses, AAA was induced in Apolipoprotein E-deficient ($ApoE^{-/-}$) male mice by angiotensin II (Ang II) infusion for four weeks. After Ang II infusion, mouse serum levels of pro-inflammatory cytokines were analysed, and aortic tissues were isolated for histological, RNA, and protein analysis. Our results also showed that PVT1 expression was significantly upregulated in abdominal aortic tissues from AAA patients compared with that in controls. Additionally, Ang II treatment significantly increased PVT1 expression, both in cultured mouse VSMCs and in AAA murine abdominal aortic tissues. Of note, the effects of Ang II in facilitating cell apoptosis, increasing matrix metalloproteinase (MMP)-2 and MMP-9, reducing tissue inhibitor of MMP (TIMP)-1, and promoting switching from the contractile to synthetic phenotype in cultured VSMCs were enhanced by overexpression of PVT1 but attenuated by knockdown of PVT1. Furthermore, knockdown of PVT1 reversed Ang II-induced AAA-associated alterations in mice, as evidenced by attenuation of aortic diameter dilation, marked adventitial thickening, loss of elastin in the aorta, enhanced aortic cell apoptosis, elevated MMP-2 and MMP-9, reduced TIMP-1, and increased pro-inflammatory cytokines. In conclusion, our findings demonstrate that knockdown of lncRNA PVT1 suppresses VSMC apoptosis, ECM disruption, and serum pro-inflammatory cytokines in a murine Ang II-induced AAA model.

Identification and functional prediction of long non-coding RNAs related to skeletal muscle development in Duroc pigs

  • Ma, Lixia;Qin, Ming;Zhang, Yulun;Xue, Hui;Li, Shiyin;Chen, Wei;Zeng, Yongqing
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1512-1523
    • /
    • 2022
  • Objective: The growth of pigs involves multiple regulatory mechanisms, and modern molecular breeding techniques can be used to understand the skeletal muscle growth and development to promote the selection process of pigs. This study aims to explore candidate lncRNAs and mRNAs related to skeletal muscle growth and development among Duroc pigs with different average daily gain (ADG). Methods: A total of 8 pigs were selected and divided into two groups: H group (high-ADG) and L group (low-ADG). And followed by whole transcriptome sequencing to identify differentially expressed (DE) lncRNAs and mRNAs. Results: In RNA-seq, 703 DE mRNAs (263 up-regulated and 440 down-regulated) and 74 DE lncRNAs (45 up-regulated and 29 down-regulated) were identified. In addition, 1,418 Transcription factors (TFs) were found. Compared with mRNAs, lncRNAs had fewer exons, shorter transcript length and open reading frame length. DE mRNAs and DE lncRNAs can form 417 lncRNA-mRNA pairs (antisense, cis and trans). DE mRNAs and target genes of lncRNAs were enriched in cellular processes, biological regulation, and regulation of biological processes. In addition, quantitative trait locus (QTL) analysis was used to detect the functions of DE mRNAs and lncRNAs, the most of DE mRNAs and target genes of lncRNAs were enriched in QTLs related to growth traits and skeletal muscle development. In single-nucleotide polymorphism/insertion-deletion (SNP/INDEL) analysis, 1,081,182 SNP and 131,721 INDEL were found, and transition was more than transversion. Over 60% of percentage were skipped exon events among alternative splicing events. Conclusion: The results showed that different ADG among Duroc pigs with the same diet maybe due to the DE mRNAs and DE lncRNAs related to skeletal muscle growth and development.

Integrated transcriptomic analysis on small yellow follicles reveals that sosondowah ankyrin repeat domain family member A inhibits chicken follicle selection

  • Zhong, Conghao;Liu, Zemin;Qiao, Xibo;Kang, Li;Sun, Yi;Jiang, Yunliang
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1290-1302
    • /
    • 2021
  • Objective: Follicle selection is an important process in chicken egg laying. Among several small yellow (SY) follicles, the one exhibiting the highest expression of follicle stimulation hormone receptor (FSHR) will be selected to become a hierarchal follicle. The role of lncRNA, miRNA and other non-coding RNA in chicken follicle selection is unclear. Methods: In this study, the whole transcriptome sequencing of SY follicles with different expression levels of FSHR in Jining Bairi hens was performed, and the expression of 30 randomly selected mRNAs, lncRNAs and miRNAs was validated by quantitative real-time polymerase chain reaction. Preliminary studies and bioinformatics analysis were performed on the selected mRNA, lncRNA, miRNA and their target genes. The effect of identified gene was examined in the granulosa cells of chicken follicles. Results: Integrated transcriptomic analysis on chicken SY follicles differing in FSHR expression revealed 467 differentially expressed mRNA genes, 134 differentially expressed lncRNA genes and 34 differentially expressed miRNA genes, and sosondowah ankyrin repeat domain family member A (SOWAHA) was the common target gene of three miRNAs and one lncRNA. SOWAHA was mainly expressed in small white (SW) and SY follicles and was affected by follicle stimulation hormone (FSH) treatment in the granulosa cells. Knockdown of SOWAHA inhibited the expression of Wnt family member 4 (Wnt4) and steroidogenic acute regulatory protein (StAR) in the granulosa cells of prehierarchal follicles, while stimulated Wnt4 in hierarchal follicles. Overexpression of SOWAHA increased the expression of Wnt4 in the granulosa cells of prehierarchal follicles, decreased that of StAR and cytochrome P450 family 11 subfamily A member 1 in the granulosa cells of hierarchal follicles and inhibited the proliferation of granulosa cells. Conclusion: Integrated analysis of chicken SY follicle transcriptomes identified SOWAHA as a network gene that is affected by FSH in granulosa cells of ovarian follicles. SOWAHA affected the expression of genes involved in chicken follicle selection and inhibited the proliferation of granulosa cells, suggesting an inhibitory role in chicken follicle selection.

The role of long noncoding RNAs in livestock adipose tissue deposition - A review

  • Wang, Lixue;Xie, Yuhuai;Chen, Wei;Zhang, Yu;Zeng, Yongqing
    • Animal Bioscience
    • /
    • v.34 no.7
    • /
    • pp.1089-1099
    • /
    • 2021
  • With the development of sequencing technology, numerous, long noncoding RNAs (lncRNAs) have been discovered and annotated. Increasing evidence has shown that lncRNAs play an essential role in regulating many biological and pathological processes, especially in cancer. However, there have been few studies on the roles of lncRNAs in livestock production. In animal products, meat quality and lean percentage are vital economic traits closely related to adipose tissue deposition. However, adipose tissue accumulation is also a pivotal contributor to obesity, diabetes, atherosclerosis, and many other diseases, as demonstrated by human studies. In livestock production, the mechanism by which lncRNAs regulate adipose tissue deposition is still unclear. In addition, the phenomenon that different animal species have different adipose tissue accumulation abilities is not well understood. In this review, we summarize the characteristics of lncRNAs and their four functional archetypes and review the current knowledge about lncRNA functions in adipose tissue deposition in livestock species. This review could provide theoretical significance to explore the functional mechanisms of lncRNAs in adipose tissue accumulation in animals.

A Long Non-Coding RNA snaR Contributes to 5-Fluorouracil Resistance in Human Colon Cancer Cells

  • Lee, Heejin;Kim, Chongtae;Ku, Ja-Lok;Kim, Wook;Kim Yoon, Sungjoo;Kuh, Hyo-Jeong;Lee, Jeong-Hwa;Nam, Suk Woo;Lee, Eun Kyung
    • Molecules and Cells
    • /
    • v.37 no.7
    • /
    • pp.540-546
    • /
    • 2014
  • Several types of genetic and epigenetic regulation have been implicated in the development of drug resistance, one significant challenge for cancer therapy. Although changes in the expression of non-coding RNA are also responsible for drug resistance, the specific identities and roles of them remain to be elucidated. Long non-coding RNAs (lncRNAs) are a type of ncRNA (> 200 nt) that influence the regulation of gene expression in various ways. In this study, we aimed to identify differentially expressed lncRNAs in 5-fluorouracil-resistant colon cancer cells. Using two pairs of 5-FU-resistant cells derived from the human colon cancer cell lines SNU-C4 and SNU-C5, we analyzed the expression of 90 lncRNAs by qPCR-based profiling and found that 19 and 23 lncRNAs were differentially expressed in SNU-C4R and SNU-C5R cells, respectively. We confirmed that snaR and BACE1AS were down-regulated in resistant cells. To further investigate the effects of snaR on cell growth, cell viability and cell cycle were analyzed after transfection of siRNAs targeting snaR. Down-regulation of snaR decreased cell death after 5-FU treatment, which indicates that snaR loss decreases in vitro sensitivity to 5-FU. Our results provide an important insight into the involvement of lncRNAs in 5-FU resistance in colon cancer cells.

Beyond X-Chromosome Inactivation: The Oncogenic Facet of XIST in Human Cancers

  • Madhi, Hamadi;Kim, Myoung Hee
    • Biomedical Science Letters
    • /
    • v.25 no.2
    • /
    • pp.113-122
    • /
    • 2019
  • Long-non coding RNAs (LncRNAs) constitute a wide and extremely diverse family of RNA transcripts that are greater than 200 base pairs in length and are not translated into proteins. X-inactive specific transcript (XIST) was the first long non-coding RNA to be discovered, back in 1991. Its function in X-chromosome inactivation has been extensively studied for three decades, though other functional roles of XIST that involve a variety of fascinating mechanisms remain to be elucidated. Here, we review the emerging oncogenic role of XIST in various human cancers.