Browse > Article
http://dx.doi.org/10.14348/molcells.2019.0077

Non-Coding RNAs in Caenorhabditis elegans Aging  

Kim, Sieun S. (Department of Life Sciences, Pohang University of Science and Technology)
Lee, Seung-Jae V. (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
Abstract
Non-coding RNAs (ncRNAs) comprise various RNA species, including small ncRNAs and long ncRNAs (lncRNAs). ncRNAs regulate various cellular processes, including transcription and translation of target messenger RNAs. Recent studies also indicate that ncRNAs affect organismal aging and conversely aging influences ncRNA levels. In this review, we discuss our current understanding of the roles of ncRNAs in aging and longevity, focusing on recent advances using the roundworm Caenorhabditis elegans. Expression of various ncRNAs, including microRNA (miRNA), tRNA-derived small RNA (tsRNA), ribosomal RNA (rRNA), PIWI-interacting RNA (piRNA), circular RNA (circRNA), and lncRNA, is altered during aging in C. elegans. Genetic modulation of specific ncRNAs affects longevity and aging rates by modulating established aging-regulating protein factors. Because many aging-regulating mechanisms in C. elegans are evolutionarily conserved, these studies will provide key information regarding how ncRNAs modulate aging and lifespan in complex organisms, including mammals.
Keywords
aging; Caenorhabditis elegans; lifespan; non-coding RNA; small RNA;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lucanic, M., Graham, J., Scott, G., Bhaumik, D., Benz, C.C., Hubbard, A., Lithgow, G.J., and Melov, S. (2013). Age-related micro-RNA abundance in individual C. elegans. Aging 5, 394-411.   DOI
2 Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S.D., Gregersen, L.H., Munschauer, M., et al. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333-338.   DOI
3 Nam, J.W., and Bartel, D.P. (2012). Long noncoding RNAs in C. elegans. Genome Res. 22, 2529-2540.   DOI
4 Oberbauer, V., and Schaefer, M.R. (2018). tRNA-derived small RNAs: biogenesis, modification, function and potential impact on human disease development. Genes (Basel) 9, 607.   DOI
5 Ozata, D.M., Gainetdinov, I., Zoch, A., O'Carroll, D., and Zamore, P.D. (2019). PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20, 89-108.   DOI
6 Li, S., Xu, Z., and Sheng, J. (2018a). tRNA-derived small RNA: a novel regulatory small non-coding RNA. Genes (Basel) 9, 246.   DOI
7 Park, H.H., Jung, Y., and Lee, S.V. (2017). Survival assays using Caenorhabditis elegans. Mol. Cells 40, 90-99.   DOI
8 Qu, Z., and Adelson, D.L. (2012). Evolutionary conservation and functional roles of ncRNA. Front. Genet. 3, 205.   DOI
9 Sahakyan, A., Yang, Y., and Plath, K. (2018). The role of Xist in X-chromosome dosage compensation. Trends Cell Biol. 28, 999-1013.   DOI
10 Salzman, J., Chen, R.E., Olsen, M.N., Wang, P.L., and Brown, P.O. (2013). Celltype specific features of circular RNA expression. PLoS Genet. 9, e1003777.   DOI
11 Shin, H., Kim, Y., Kim, M., and Lee, Y. (2018). BC200 RNA: an emerging therapeutic target and diagnostic marker for human cancer. Mol. Cells 41, 993-999.   DOI
12 Simon, M., Sarkies, P., Ikegami, K., Doebley, A.L., Goldstein, L.D., Mitchell, J., Sakaguchi, A., Miska, E.A., and Ahmed, S. (2014). Reduced insulin/IGF-1 signaling restores germ cell immortality to Caenorhabditis elegans Piwi mutants. Cell Rep. 7, 762-773.   DOI
13 Smith-Vikos, T., de Lencastre, A., Inukai, S., Shlomchik, M., Holtrup, B., and Slack, F.J. (2014). MicroRNAs mediate dietary-restriction-induced longevity through PHA-4/FOXA and SKN-1/Nrf transcription factors. Curr. Biol. 24, 2238-2246.   DOI
14 Sousa-Victor, P., Ayyaz, A., Hayashi, R., Qi, Y., Madden, D.T., Lunyak, V.V., and Jasper, H. (2017). Piwi is required to limit exhaustion of aging somatic stem cells. Cell Rep. 20, 2527-2537.   DOI
15 Szczepanek, J., Pareek, C.S., and Tretyn, A. (2018). The role of microRNAs in animal physiology and pathology. Transl. Res. Vet. Sci. 1, 13-33.   DOI
16 Quinn, J.J., and Chang, H.Y. (2016). Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 17, 47-62.   DOI
17 Treiber, T., Treiber, N., and Meister, G. (2019). Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell Biol. 20, 5-20.   DOI
18 Ulitsky, I., and Bartel, D.P. (2013). lincRNAs: genomics, evolution, and mechanisms. Cell 154, 26-46.   DOI
19 Vora, M., Shah, M., Ostafi, S., Onken, B., Xue, J., Ni, J.Z., Gu, S., and Driscoll, M. (2013). Deletion of microRNA-80 activates dietary restriction to extend C. elegans healthspan and lifespan. PLoS Genet. 9, e1003737.   DOI
20 Wang, Y.H., Yu, X.H., Luo, S.S., and Han, H. (2015). Comprehensive circular RNA profiling reveals that circular RNA100783 is involved in chronic CD28-associated CD8(+)T cell ageing. Immun. Ageing 12, 17.   DOI
21 Weick, E.M., and Miska, E.A. (2014). piRNAs: from biogenesis to function. Development 141, 3458-3471.   DOI
22 Westholm, J.O., Miura, P., Olson, S., Shenker, S., Joseph, B., Sanfilippo, P., Celniker, S.E., Graveley, B.R., and Lai, E.C. (2014). Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 9, 1966-1980.   DOI
23 Yang, D., Yang, K., and Yang, M. (2018). Circular RNA in aging and agerelated diseases. Adv. Exp. Med. Biol. 1086, 17-35.   DOI
24 Yang, J., Chen, D., He, Y., Melendez, A., Feng, Z., Hong, Q., Bai, X., Li, Q., Cai, G., Wang, J., et al. (2013). MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9. Age (Dordr.) 35, 11-22.   DOI
25 Zhang, X.O., Dong, R., Zhang, Y., Zhang, J.L., Luo, Z., Zhang, J., Chen, L.L., and Yang, L. (2016). Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 26, 1277-1287.   DOI
26 Zhang, Y., Zhang, W., and Dong, M. (2018). The miR-58 microRNA family is regulated by insulin signaling and contributes to lifespan regulation in Caenorhabditis elegans. Sci. China Life Sci. 61, 1060-1070.   DOI
27 Essers, P.B., Nonnekens, J., Goos, Y.J., Betist, M.C., Viester, M.D., Mossink, B., Lansu, N., Korswagen, H.C., Jelier, R., Brenkman, A.B., et al. (2015). A long noncoding RNA on the ribosome is required for lifespan extension. Cell Rep. 10, 339-345.   DOI
28 Aalto, A.P., Nicastro, I.A., Broughton, J.P., Chipman, L.B., Schreiner, W.P., Chen, J.S., and Pasquinelli, A.E. (2018). Opposing roles of microRNA Argonautes during Caenorhabditis elegans aging. PLoS Genet. 14, e1007379.   DOI
29 Akay, A., Jordan, D., Navarro, I.C., Wrzesinski, T., Ponting, C.P., Miska, E.A., and Haerty, W. (2019). Identification of functional long non-coding RNAs in C. elegans. BMC Biol. 17, 14.   DOI
30 Dzakah, E.E., Waqas, A., Wei, S., Yu, B., Wang, X., Fu, T., Liu, L., and Shan, G. (2018). Loss of miR-83 extends lifespan and affects target gene expression in an age-dependent manner in Caenorhabditis elegans. J. Genet. Genomics 45, 651-662.   DOI
31 Fabian, T.J., and Johnson, T.E. (1995). Total RNA, rRNA and poly(A)+RNA abundances during aging in Caenorhabditis elegans. Mech. Ageing Dev. 83, 155-170.   DOI
32 Fernandes, J.C.R., Acuna, S.M., Aoki, J.I., Floeter-Winter, L.M., and Muxel, S.M. (2019). Long non-coding RNAs in the regulation of gene expression: physiology and disease. Noncoding RNA 5, 17.
33 Filer, D., Thompson, M.A., Takhaveev, V., Dobson, A.J., Kotronaki, I., Green, J.W.M., Heinemann, M., Tullet, J.M.A., and Alic, N. (2017). RNA polymerase III limits longevity downstream of TORC1. Nature 552, 263-267.   DOI
34 Garg, D., and Cohen, S.M. (2014). miRNAs and aging: a genetic perspective. Ageing Res. Rev. 17, 3-8.   DOI
35 Grammatikakis, I., Panda, A.C., Abdelmohsen, K., and Gorospe, M. (2014). Long noncoding RNAs(lncRNAs) and the molecular hallmarks of aging. Aging 6, 992-1009.   DOI
36 Ha, M., and Kim, V.N. (2014). Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15, 509-524.   DOI
37 Hansen, T.B., Jensen, T.I., Clausen, B.H., Bramsen, J.B., Finsen, B., Damgaard, C.K., and Kjems, J. (2013). Natural RNA circles function as efficient microRNA sponges. Nature 495, 384-388.   DOI
38 Boehm, M., and Slack, F. (2005). A developmental timing microRNA and its target regulate life span in C. elegans. Science 310, 1954-1957.   DOI
39 Altintas, O., Park, S., and Lee, S.J.V. (2016). The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep. 49, 81-92.   DOI
40 Batista, P.J., Ruby, J.G., Claycomb, J.M., Chiang, R., Fahlgren, N., Kasschau, K.D., Chaves, D.A., Gu, W., Vasale, J.J., Duan, S., et al. (2008). PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol. Cell 31, 67-78.   DOI
41 Briggs, J.A., Wolvetang, E.J., Mattick, J.S., Rinn, J.L., and Barry, G. (2015). Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution. Neuron 88, 861-877.   DOI
42 Cech, T.R., and Steitz, J.A. (2014). The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157, 77-94.   DOI
43 Chalbatani, G.M., Dana, H., Memari, F., Gharagozlou, E., Ashjaei, S., Kheirandish, P., Marmari, V., Mahmoudzadeh, H., Mozayani, F., Maleki, A.R., et al. (2019). Biological function and molecular mechanism of piRNA in cancer. Pract. Lab. Med. 13, e00113.   DOI
44 Cocquerelle, C., Mascrez, B., Hetuin, D., and Bailleul, B. (1993). Mis-splicing yields circular RNA molecules. FASEB J. 7, 155-160.   DOI
45 Cortes-Lopez, M., Gruner, M.R., Cooper, D.A., Gruner, H.N., Voda, A.I., van der Linden, A.M., and Miura, P. (2018). Global accumulation of circRNAs during aging in Caenorhabditis elegans. BMC Genomics 19, 8.   DOI
46 Du, W.W., Yang, W., Liu, E., Yang, Z., Dhaliwal, P., and Yang, B.B. (2016). Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44, 2846-2858.   DOI
47 Hoogstrate, S.W., Volkers, R.J., Sterken, M.G., Kammenga, J.E., and Snoek, L.B. (2014). Nematode endogenous small RNA pathways. Worm 3, e28234.   DOI
48 de Lencastre, A., Pincus, Z., Zhou, K., Kato, M., Lee, S.S., and Slack, F.J. (2010). MicroRNAs both promote and antagonize longevity in C. elegans. Curr. Biol. 20, 2159-2168.   DOI
49 Dimmeler, S., and Nicotera, P. (2013). MicroRNAs in age-related diseases. EMBO Mol. Med. 5, 180-190.   DOI
50 Du, W.W., Yang, W., Chen, Y., Wu, Z.K., Foster, F.S., Yang, Z., Li, X., and Yang, B.B. (2017). Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur. Heart J. 38, 1402-1412.
51 Kato, M., Chen, X., Inukai, S., Zhao, H., and Slack, F.J. (2011). Age-associated changes in expression of small, noncoding RNAs, including microRNAs, in C. elegans. RNA 17, 1804-1820.   DOI
52 Inukai, S., Pincus, Z., de Lencastre, A., and Slack, F.J. (2018). A microRNA feedback loop regulates global microRNA abundance during aging. RNA 24, 159-172.   DOI
53 Inukai, S., and Slack, F. (2013). MicroRNAs and the genetic network in aging. J. Mol. Biol. 425, 3601-3608.   DOI
54 Karaiskos, S., and Grigoriev, A. (2016). Dynamics of tRNA fragments and their targets in aging mammalian brain. F1000Res. 5, 2758.   DOI
55 Kato, M., and Slack, F.J. (2013). Ageing and the small, non-coding RNA world. Ageing Res. Rev. 12, 429-435.   DOI
56 Kenyon, C.J. (2010). The genetics of ageing. Nature 464, 504-512.   DOI
57 Kogure, A., Uno, M., Ikeda, T., and Nishida, E. (2017). The microRNA machinery regulates fasting-induced changes in gene expression and longevity in Caenorhabditis elegans. J. Biol. Chem. 292, 11300-11309.   DOI
58 Kour, S., and Rath, P.C. (2016). Long noncoding RNAs in aging and agerelated diseases. Ageing Res. Rev. 26, 1-21.   DOI
59 Kumar, P., Kuscu, C., and Dutta, A. (2016). Biogenesis and function of transfer RNA-related fragments (tRFs). Trends Biochem. Sci. 41, 679-689.   DOI
60 Lambert, M., Benmoussa, A., and Provost, P. (2019). Small non-coding RNAs derived from Eukaryotic ribosomal RNA. Noncoding RNA 5, 16.
61 Lu, Z., Filonov, G.S., Noto, J.J., Schmidt, C.A., Hatkevich, T.L., Wen, Y., Jaffrey, S.R., and Matera, A.G. (2015). Metazoan tRNA introns generate stable circular RNAs in vivo. RNA 21, 1554-1565.   DOI
62 Lee, Y., An, S.W.A., Artan, M., Seo, M., Hwang, A.B., Jeong, D.E., Son, H.G., Hwang, W., Lee, D., Seo, K., et al. (2015). Genes and pathways that influence longevity in Caenorhabditis elegans. In Aging Mechanisms, N. Mori and I. Mook-Jung, eds. (Tokyo, Japan: Springer Japan), pp. 123-169.
63 Li, X., Yang, L., and Chen, L.L. (2018b). The biogenesis, functions, and challenges of circular RNAs. Mol. Cell 71, 428-442.   DOI
64 Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., Zhong, G., Yu, B., Hu, W., Dai, L., et al. (2015). Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 22, 256-264.   DOI