Browse > Article
http://dx.doi.org/10.14348/molcells.2018.0162

Knockdown of lncRNA PVT1 Inhibits Vascular Smooth Muscle Cell Apoptosis and Extracellular Matrix Disruption in a Murine Abdominal Aortic Aneurysm Model  

Zhang, Zhidong (Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital)
Zou, Gangqiang (Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital)
Chen, Xiaosan (Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital)
Lu, Wei (Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital)
Liu, Jianyang (Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital)
Zhai, Shuiting (Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital)
Qiao, Gang (Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital)
Abstract
This study was designed to determine the effects of the long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) on vascular smooth muscle cell (VSMC) apoptosis and extracellular matrix (ECM) disruption in a murine abdominal aortic aneurysm (AAA) model. After injection of PVT1-silencing lentiviruses, AAA was induced in Apolipoprotein E-deficient ($ApoE^{-/-}$) male mice by angiotensin II (Ang II) infusion for four weeks. After Ang II infusion, mouse serum levels of pro-inflammatory cytokines were analysed, and aortic tissues were isolated for histological, RNA, and protein analysis. Our results also showed that PVT1 expression was significantly upregulated in abdominal aortic tissues from AAA patients compared with that in controls. Additionally, Ang II treatment significantly increased PVT1 expression, both in cultured mouse VSMCs and in AAA murine abdominal aortic tissues. Of note, the effects of Ang II in facilitating cell apoptosis, increasing matrix metalloproteinase (MMP)-2 and MMP-9, reducing tissue inhibitor of MMP (TIMP)-1, and promoting switching from the contractile to synthetic phenotype in cultured VSMCs were enhanced by overexpression of PVT1 but attenuated by knockdown of PVT1. Furthermore, knockdown of PVT1 reversed Ang II-induced AAA-associated alterations in mice, as evidenced by attenuation of aortic diameter dilation, marked adventitial thickening, loss of elastin in the aorta, enhanced aortic cell apoptosis, elevated MMP-2 and MMP-9, reduced TIMP-1, and increased pro-inflammatory cytokines. In conclusion, our findings demonstrate that knockdown of lncRNA PVT1 suppresses VSMC apoptosis, ECM disruption, and serum pro-inflammatory cytokines in a murine Ang II-induced AAA model.
Keywords
abdominal aortic aneurysm; apoptosis; extracellular matrix; lncRNA PVT1; vascular smooth muscle cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang, S., Xie, J., Green, L., McCready, R., Motaganahalli, R., Fajardo, A., Babbey, C., and Murphy, M. (2017). TSG-6 is highly expressed in human abdominal aortic aneurysms. J. Surg. Res. 220, 311-319.   DOI
2 Watanabe, A., Ichiki, T., Sankoda, C., Takahara, Y., Ikeda, J., Inoue, E., Tokunou, T., Kitamoto, S., and Sunagawa, K. (2014). Suppression of abdominal aortic aneurysm formation by inhibition of prolyl hydroxylase domain protein through attenuation of inflammation and extracellular matrix disruption. Clin. Sci. 126, 671-678.   DOI
3 Wu, D., Li, Y., Zhang, H., and Hu, X. (2017). Knockdown of lncrna PVT1 enhances radiosensitivity in non-small cell lung cancer by sponging mir-195. Cell Physiol. Biochem. 42, 2453-2466.   DOI
4 Yang, Y.G., Li, M.X., Kou, L., Zhou, Y., Qin, Y.W., Liu, X.J., and Chen, Z. (2016). Long noncoding RNA expression signatures of abdominal aortic aneurysm revealed by microarray. Biomed. Environ. Sci. 29, 713-723.   DOI
5 Ailawadi, G., Moehle, C., Pei, H., Walton, S., Yang, Z., Kron, I., Lau, C., and Owens, G. (2009). Smooth muscle phenotypic modulation is an early event in aortic aneurysms. J. Thorac. Cardiovasc. Surg. 138, 1392-1399.   DOI
6 Chen, W., Zhu, H., Yin, L., Wang, T., Wu, J., Xu, J., Tao, H., Liu, J., and He, X. (2017). lncRNA-PVT1 facilitates invasion through upregulation of MMP9 in nonsmall cell lung cancer cell. DNA Cell Bio. 36, 787-793.   DOI
7 Chiou, A.C., Chiu, B., and Pearce, W.H. (2001). Murine aortic aneurysm produced by periarterial application of calcium chloride. J. Surg. Res. 99, 371-376.   DOI
8 Zhang, S., Du, X., Chen, Y., Tan, Y., and Liu, L. (2018). Potential medication treatment according to pathological mechanisms in abdominal aortic aneurysm. J. Cardiovasc. Pharmacol. 71, 46-57   DOI
9 Zhao, L., Kong, H., Sun, H., Chen, Z., Chen, B., and Zhou, M. (2018). LncRNA-PVT1 promotes pancreatic cancer cells proliferation and migration through acting as a molecular sponge to regulate miR-448. J. Cell. Physiol. 233, 4044-4055   DOI
10 Zhou, Y., Wang, J., Xue, Y., Fang, A., Wu, S., Huang, K., Tao, L., Wang, J., Shen, Y., Wang, J., et al. (2017). Microarray analysis reveals a potential role of lncRNA expression in 3,4-benzopyrene/angiotensin II-activated macrophage in abdominal aortic aneurysm. Stem Cells Int. 2017, 9495739.
11 Pyo, R., Lee, J.K., Shipley, J.M., Curci, J.A., Mao, D., Ziporin, S.J., Ennis, T.L., Shapiro, S.D., Senior, R.M., and Thompson, R.W. (2000). Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J. Clin. Invest. 105, 1641-1649.   DOI
12 Curci, J.A., Petrinec, D., Liao, S., Golub, L.M., and Thompson, R.W. (1998). Pharmacologic suppression of experimental abdominal aortic aneurysms: acomparison of doxycycline and four chemically modified tetracyclines. J. Vasc. Surg. 28, 1082-1093.   DOI
13 Defawe, O.D., Colige, A., Lambert, C.A., Munaut, C., Delvenne, P., Lapiere, C.M., Limet, R., Nusgens, B.V., and Sakalihasan, N. (2003). TIMP-2 and PAI-1 mRNA levels are lower in aneurysmal as compared to athero-occlusive abdominal aortas. Cardiovasc. Res. 60, 205-213.   DOI
14 Miyake, T., and Morishita, R. (2009). Pharmacological treatment of abdominal aortic aneurysm. Cardiovasc. Res. 83, 436-443.   DOI
15 Morris, D.R., Biros, E., Cronin, O., Kuivaniemi, H., and Golledge, J. (2014). The association of genetic variants of matrix metalloproteinases with abdominal aortic aneurysm: a systematic review and meta-analysis. Heart 100, 295-302.   DOI
16 Ng, S.Y., Lin, L., Soh, B.S., and Stanton, L.W. (2013). Long noncoding RNAs in development and disease of the central nervous system. Trends Genet. 29, 461-468.   DOI
17 Pande, R.L., and Beckman, J.A. (2008). Abdominal aortic aneurysm: populations at risk and how to screen. J. Vasc. Interv. Radiol. 19, S2-8.   DOI
18 Parvizi, M., and Harmsen, M. (2015). Therapeutic prospect of adipose-derived stromal cells for the treatment of abdominal aortic aneurysm. Stem Cells Dev. 24, 1493-1505.   DOI
19 Qin, Y., Wang, Y., Liu, O., Jia, L., Fang, W., Du, J., and Wei, Y. (2017). Tauroursodeoxycholic acid attenuates angiotensin II induced abdominal aortic aneurysm formation in apolipoprotein E-deficient mice by inhibiting endoplasmic reticulum stress. Eur. J. Vasc. Endovasc. Surg. 53, 337-345.   DOI
20 Ren, H., Li, F., Tian, C., Nie, H., Wang, L., Li, H.H., and Zheng, Y. (2015). Inhibition of proteasome activity by low-dose bortezomib attenuates angiotensin II-induced abdominal aortic aneurysm in apo E(-/-) mice. Sci. Rep. 5, 15730.   DOI
21 Guo, D., Wang, Y., Ren, K., and Han, X. (2018). Knockdown of LncRNA PVT1 inhibits tumorigenesis in non-small-cell lung cancer by regulating miR-497 expression. Exp. Cell Res. 362, 172-179.   DOI
22 Diaz, A., Garcia, F., Mozos, A., Caballero, M., Leon, A., Martinez, A., Gil, C., Plana, M., Gallart, T., Gatell, J.M., et al. (2011). Lymphoid tissue collagen deposition in HIV-infected patients correlates with the imbalance between matrix metalloproteinases and their inhibitors. J. Infect. Dis. 203, 810-813.   DOI
23 Freestone, T., Turner, R.J., Coady, A., Higman, D.J., Greenhalgh, R.M., and Powell, J.T. (1995). Inflammation and matrix metalloproteinases in the enlarging abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 15, 1145-1151.   DOI
24 Fu, X.M., Yamawaki-Ogata, A., Oshima, H., Ueda, Y., Usui, A., and Narita, Y. (2013). Intravenous administration of mesenchymal stem cells prevents angiotensin II-induced aortic aneurysm formation in apolipoprotein E-deficient mouse. J. Transl. Med. 11, 175.   DOI
25 Galis, Z.S., Muszynski, M., Sukhova, G.K., Simon-Morrissey, E., and Libby, P. (1995). Enhanced expression of vascular matrix metalloproteinases induced in vitro by cytokines and in regions of human atherosclerotic lesions. Ann. NY. Acad. Sci. 748, 501-507.
26 Giraud, A., Zeboudj, L., Vandestienne, M., Joffre, J., Esposito, B., Potteaux, S., Vilar, J., Cabuzu, D., Kluwe, J., Seguier, S., et al. (2017). Gingival fibroblasts protect against experimental abdominal aortic aneurysm development and rupture through tissue inhibitor of metalloproteinase-1 production. Cardiovasc. Res. 113, 1364-1375.   DOI
27 Jin, J., Cai, L., Liu, Z.M., and Zhou, X.S. (2013). miRNA-218 inhibits osteosarcoma cell migration and invasion by down-regulating of TIAM1, MMP2 and MMP9. Asian Pac. J. Cancer Prev. 14, 3681-3684.   DOI
28 Kent, K.C. (2014). Clinical practice. Abdominal aortic aneurysms. N. Engl. J. Med. 371, 2101-2108.   DOI
29 Sachdeva, J., Mahajan, A., Cheng, J., Baeten, J.T., Lilly, B., Kuivaniemi, H., and Hans, C.P. (2017). Smooth muscle cell-specific Notch1 haploinsufficiency restricts the progression of abdominal aortic aneurysm by modulating CTGF expression. PLoS One 12, e0178538.   DOI
30 Senemaud, J., Caligiuri, G., Etienne, H., Delbosc, S., Michel, J., and Coscas, R. (2017). Translational relevance and recent advances of animal models of abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 37, 401-410.   DOI
31 Sakata, K., Shigemasa, K., Nagai, N., and Ohama, K. (2000). Expression of matrix metalloproteinases (MMP-2, MMP-9, MT1-MMP) and their inhibitors (TIMP-1, TIMP-2) in common epithelial tumors of the ovary. Int. J. Oncol. 17, 673-681.
32 Shen, C.J., Cheng, Y.M., and Wang, C.L. (2017). LncRNA PVT1 epigenetically silences miR-195 and modulates EMT and chemoresistance in cervical cancer cells. J. Drug Target. 25, 637-644.   DOI
33 Tamarina, N.A., McMillan, W.D., Shively, V.P., and Pearce, W.H. (1997). Expression of matrix metalloproteinases and their inhibitors in aneurysms and normal aorta. Surgery 122, 264-271.   DOI
34 Tu, M., Li, Y., Zeng, C., Deng, Z., Gao, S., Xiao, W., Luo, W., Jiang, W., Li, L., and Lei, G. (2016). MicroRNA-127-5p regulates osteopontin expression and osteopontin-mediated proliferation of human chondrocytes. Sci. Rep. 6, 25032.   DOI
35 Ventayol, M., Vinas, J.L., Sola, A., Jung, M., Brune, B., Pi, F., Mastora, C., and Hotter, G. (2014). miRNA let-7e targeting MMP9 is involved in adipose-derived stem cell differentiation toward epithelia. Cell Death Dis. 5, e1048.   DOI
36 Lan, T., Yan, X., Li, Z., Xu, X., Mao, Q., Ma, W., Hong, Z., Chen, X., and Yuan, Y. (2017). Long non-coding RNA PVT1 serves as a competing endogenous RNA for miR-186-5p to promote the tumorigenesis and metastasis of hepatocellular carcinoma. Tumour Biol. 39, 1010428317705338.
37 Wang, J., Gao, Y., Ma, M., Li, M., Zou, D., Yang, J., Zhu, Z., and Zhao, X. (2013). Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice. Cell Biochem. Biophys. 67, 537-546.   DOI
38 Kosmala, W., Plaksej, R., Przewlocka-Kosmala, M., Kuliczkowska-Plaksej, J., Bednarek-Tupikowska, G., and Mazurek, W. (2008). Matrix metalloproteinases 2 and 9 and their tissue inhibitors 1 and 2 in premenopausal obese women: relationship to cardiac function. Int. J. Obes. 32, 763-771.   DOI
39 Kumar, Y., Hooda, K., Li, S., Goyal, P., Gupta, N., and Adeb, M. (2017). Abdominal aortic aneurysm: pictorial review of common appearances and complications. Ann. Transl. Med. 5, 256.   DOI
40 Kung, J.T., Colognori, D., and Lee, J.T. (2013). Long noncoding RNAs: past, present, and future. Genetics 193, 651-669.   DOI
41 Li, Y., and Maegdefessel, L. (2017). Non-coding RNA contribution to thoracic and abdominal aortic aneurysm disease development and progression. Front. Physiol. 8, 429.   DOI
42 Liu, F., Dong, Q., and Huang, J. (2017). Overexpression of LncRNA PVT1 predicts advanced clinicopathological features and serves as an unfavorable risk factor for survival of patients with gastrointestinal cancers. Cell Physiol. Biochem. 43, 1077-1089.   DOI
43 Maegdefessel, L., Azuma, J., Toh, R., Merk, D.R., Deng, A., Chin, J.T., Raaz, U., Schoelmerich, A.M., Raiesdana, A., Leeper, N.J., et al. (2012). Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development. J. Clin. Invest. 122, 497-506.   DOI
44 Martorell, S., Hueso, L., Gonzalez-Navarro, H., Collado, A., Sanz, M., and Piqueras, L. (2016). Vitamin D receptor activation reduces angiotensin-II-induced dissecting abdominal aortic aneurysm in apolipoprotein E-knockout mice. Arterioscler. Thromb. Vasc. Biol. 36, 1587-1597.   DOI