• 제목/요약/키워드: liver cells

검색결과 1,969건 처리시간 0.026초

Exosomes: Nomenclature, Isolation, and Biological Roles in Liver Diseases

  • Seol Hee Park;Eun Kyeong Lee;Joowon Yim;Min Hoo Lee;Eojin Lee;Young-Sun Lee;Wonhyo Seo
    • Biomolecules & Therapeutics
    • /
    • 제31권3호
    • /
    • pp.253-263
    • /
    • 2023
  • The biogenesis and biological roles of extracellular vesicles (EVs) in the progression of liver diseases have attracted considerable attention in recent years. EVs are membrane-bound nanosized vesicles found in different types of body fluids and contain various bioactive materials, including proteins, lipids, nucleic acids, and mitochondrial DNA. Based on their origin and biogenesis, EVs can be classified as apoptotic bodies, microvesicles, and exosomes. Among these, exosomes are the smallest EVs (30-150 nm in diameter), which play a significant role in cell-to-cell communication and epigenetic regulation. Moreover, exosomal content analysis can reveal the functional state of the parental cell. Therefore, exosomes can be applied to various purposes, including disease diagnosis and treatment, drug delivery, cell-free vaccines, and regenerative medicine. However, exosome-related research faces two major limitations: isolation of exosomes with high yield and purity and distinction of exosomes from other EVs (especially microvesicles). No standardized exosome isolation method has been established to date; however, various exosome isolation strategies have been proposed to investigate their biological roles. Exosome-mediated intercellular communications are known to be involved in alcoholic liver disease and nonalcoholic fatty liver disease development. Damaged hepatocytes or nonparenchymal cells release large numbers of exosomes that promote the progression of inflammation and fibrogenesis through interactions with neighboring cells. Exosomes are expected to provide insight on the progression of liver disease. Here, we review the biogenesis of exosomes, exosome isolation techniques, and biological roles of exosomes in alcoholic liver disease and nonalcoholic fatty liver disease.

산양의 Liver cirrhosis 발생보고 (Liver Cirrhosis of Korean Native Goat in Korea : A Case Report)

  • 민병만;박경애;김환균;조용성;김성열;구찬희;정운익;김홍집
    • 한국동물위생학회지
    • /
    • 제16권1호
    • /
    • pp.57-64
    • /
    • 1993
  • This survey was performed to report rare outbreak of liver cirrhosis in Korean native goat (KNG) which was died of Yangpyeong's goat farm on Feb. 1992. The examination for the KNG was carried out by clinical signs, necropsy and various lab-oratory test including parasitic, bacterial and histological test. The KNG looked jaundice, ascite, hemorrhage of lumen, abomasum and intestine, and brownish smooth cirrhotic liver at necropsy. Histological examination for liver revealed considerable proliferation of connective tissue and piecemeal necrosis which was caused by chronic active inflammation in interlobules and intralobules. There were atrophic micro and macro nodules which were sur-rounded by connective tissue. The lobular structure lack almost all central vein. The portal areas appearred proliferation of bile ducts, blood vessels and connective tissues. These connective tissue infiltrated heavily with plasma cells, Iymphocytes and histocytes. Histological examination for brain proved to be hepatic encephalopathy by virture of congestion and edema in cerebral medullary. From these results were demonstrated miked nodular, active, postnecrotic liver cirrhosis.

  • PDF

Pharmacological potential of ginseng and ginsenosides in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis

  • Young-Su Yi
    • Journal of Ginseng Research
    • /
    • 제48권2호
    • /
    • pp.122-128
    • /
    • 2024
  • Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by hepatic fat accumulation, while nonalcoholic steatohepatitis (NASH) is an advanced form of NAFLD characterized by hepatic inflammation, fibrosis, and liver injury, resulting in liver cirrhosis and hepatocellular carcinoma (HCC). Given the evidence that ginseng and its major bioactive components, ginsenosides, have potent anti-adipogenic, anti-inflammatory, anti-oxidative, and anti-fibrogenic effects, the pharmacological effect of ginseng and ginsenosides on NAFLD and NASH is noteworthy. Furthermore, numerous studies have successfully demonstrated the protective effect of ginseng on these diseases, as well as the underlying mechanisms in animal disease models and cells, such as hepatocytes and macrophages. This review discusses recent studies that explore the pharmacological roles of ginseng and ginsenosides in NAFLD and NASH and highlights their potential as agents to prevent and treat NAFLD, NASH, and liver diseases caused by hepatic steatosis and inflammation.

감마선에 조사된 생쥐에 있어서 방사선방어효과 평가를 위한 생물학적 파라메타 (Biological Parameters for Assessing Radioprotective Effects in ${\gamma}-irradiated$ Mice)

  • 천기정;김봉희;이영근;김진규
    • 약학회지
    • /
    • 제43권2호
    • /
    • pp.278-284
    • /
    • 1999
  • This study deals with the biological changes in mice after ${\gamma}-irradiated$. Four weeks old BALA/c mice were irradiated with 6.5Gy of ${\gamma}-ray$ on the fifth day after oral administration of radioprotectants such as ascorbic acid, tocopherol and cysteine. Control group was irradiated with 6.5Gy without pre-administration of radioprotectors. Blood cells and sperm cells were counted and body, testis and spleen were weighed 3 days after irradiation. And also liver antioxidant activity and range of spleen immune cells were measured. Differences in most biological parameters were not clearly distinguished between experimental groups. However, the relative spleen weight, the relative testis weight and the population size of spleen immune cells such as T helper cells, B cells and macrophages measured by means of FACS showed significant difference between irradiated and radioprotectant administered group. It is concluded that the relative spleen weight, the relative testis weight and the population size of spleen immune cells are easy and useful parameters for assessing the effect of radioprotective substances and for quantifying biological damage of radiation, as well.

  • PDF

Drug Resistance Effects of Ribosomal Protein L24 Overexpression in Hepatocellular Carcinoma HepG2 Cells

  • Guo, Yong-Li;Kong, Qing-Sheng;Liu, Hong-Sheng;Tan, Wen-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권22호
    • /
    • pp.9853-9857
    • /
    • 2014
  • Background: The morbidity and mortality rate of liver cancer continues to rise in China and advanced cases respond poorly to chemotherapy. Ribosomal protein L24 has been reported to be a potential therapeutic target whose depletion or acetylation inhibits polysome assembly and cell growth of cancer. Materials and Methods: Total RNA of cultured amycin-resistant and susceptible HepG2 cells was isolated, and real time quantitative RT-PCR were used to indicate differences between amycin-resistant and susceptible strains of HepG2 cells. Viability assays were used to determine amycin resistance in RPL24 transfected and control vector and null-transfected HepG2 cell lines. Results: The ribosomal protein L24 transcription level was 7.7 times higher in the drug-resistant HepG2 cells as compared to susceptible cells on quantitative RT-PCR analysis. This was associated with enhanced drug resistance as determined by methyl tritiated thymidine (3H-TdR) incorporation. Conclusions: The ribosomal protein L24 gene may have effects on drug resistance mechanisms in hepatocellular carcinoma HepG2 cells.

Attenuation of Experimental Autoimmune Hepatitis in Mice with Bone Mesenchymal Stem Cell-Derived Exosomes Carrying MicroRNA-223-3p

  • Lu, Feng-Bin;Chen, Da-Zhi;Chen, Lu;Hu, En-De;Wu, Jin-Lu;Li, Hui;Gong, Yue-Wen;Lin, Zhuo;Wang, Xiao-Dong;Li, Ji;Jin, Xiao-Ya;Xu, Lan-Man;Chen, Yong-Ping
    • Molecules and Cells
    • /
    • 제42권12호
    • /
    • pp.906-918
    • /
    • 2019
  • MicroRNA-223-3p (miR-223-3p) is one of the potential microRNAs that have been shown to alleviate inflammatory responses in pre-clinical investigations and is highly encased in exosomes derived from bone mesenchymal stem cells (MSC-exosomes). MSC-exosomes are able to function as carriers to deliver microRNAs into cells. Autoimmune hepatitis is one of the challenging liver diseases with no effective treatment other than steroid hormones. Here, we examined whether MSC-exosomes can transfer miR-223-3p to treat autoimmune hepatitis in an experimental model. We found that MSC-exosomes were successfully incorporated with miR-223-3p and delivered miR-223-3p into macrophages. Moreover, there was no toxic effect of exosomes on the macrophages. Furthermore, treatments of either exosomes or exosomes with miR-223-3p successfully attenuated inflammatory responses in the liver of autoimmune hepatitis and inflammatory cytokine release in both the liver and macrophages. The mechanism may be related to the regulation of miR-223-3p level and STAT3 expression in the liver and macrophages. These results suggest that MSC-exosomes can be used to deliver miR-223-3p for the treatment of autoimmune hepatitis.

Attenuation of Hepatic Graft-versus-host Disease in Allogeneic Recipients of MyD88-deficient Donor Bone Marrow

  • Lim, Ji-Young;Lee, Young-Kwan;Lee, Sung-Eun;Ju, Ji-Min;Park, Gyeongsin;Choi, Eun Young;Min, Chang-Ki
    • IMMUNE NETWORK
    • /
    • 제15권3호
    • /
    • pp.125-134
    • /
    • 2015
  • Acute graft-versus-host-disease (GVHD) is characterized by selective damage to the liver, the skin, and the gastrointestinal tract. Following allogeneic hematopoietic stem cell transplantation, donor bone marrow (BM) cells repopulate the immune system of the recipient. We previously demonstrated that the acute intestinal GVHD (iGVHD) mortality rate was higher in MyD88-deficient BM recipients than that in the control BM recipients. In the present study, the role of MyD88 (expressed by donor BM) in the pathophysiology of hepatic GVHD (hGVHD) was examined. Unlike iGVHD, transplantation with MyD88-deficient T-cell depleted (TCD) BM attenuated hGVHD severity and was associated with low infiltration of T cells into the liver of the recipients. Moreover, GVHD hosts, transplanted with MyD88-deficient TCD BM, exhibited markedly reduced expansion of $CD11b^+Gr-1^+$ myeloidderived suppressor cells (MDSC) in the liver. Adoptive injection of the MDSC from wild type mice, but not MyD88-deficient mice, enhanced hepatic T cell infiltration in the MyD88-deficient TCD BM recipients. Pre-treatment of BM donors with LPS increased MDSC levels in the liver of allogeneic wild type BM recipients. In conclusion, hGVHD and iGVHD may occur through various mechanisms based on the presence of MyD88 in the non-T cell compartment of the allograft.

Functional Expression of Saccharomyces cerevisiae NADH-quinone Oxidoreductase (NDI1) Gene in the AML12 Mouse Liver Hepatocytes for the Applying Embryonic Stem Cell

  • Seo, Byoung-Boo;Park, Hum-Dai
    • Reproductive and Developmental Biology
    • /
    • 제35권4호
    • /
    • pp.427-434
    • /
    • 2011
  • Mitochondria diseases have been reported to involve structural and functional defects of complex I-V. Especially, many of these diseases are known to be related to dysfunction of mitochondrial proton-translocating NADH-ubiquinone oxidoreductase (complex I). The dysfunction of mitochondria complex I is associated with neurodegenerative disorders, such as Parkinson's disease, Huntington's disease, and Leber's hereditary optic neuropathy (LHON). Mammalian mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) is largest and consists of at least 46 different subunits. In contrast, the NDI1 gene of Saccharomyces cerevisiae is a single subunit rotenone-insensitive NADH-quinone oxidoreductase that is located on the matrix side of the inner mitochondrial membrane. The Saccharomyces cerevisiae NDI1 gene using a recombinant adeno-associated virus vector (rAAV-NDI1) was successfully expressed in AML12 mouse liver hepatocytes and the NDI1-transduced cells were able to grow in media containing rotenone. In contrast, control cells that did not receive the NDI1 gene failed to survive. The expressed Ndi1 enzyme was recognized to be localized in mitochondria by confocal immunofluorescence microscopic analyses and immunoblotting. Using digitonin-permeabilized cells, it was shown that the NADH oxidase activity of the NDI1-transduced cells was not affected by rotenone which is inhibitor of complex I, but was inhibited by antimycin A. Furthermore, these results indicate that Ndi1 can be functionally expressed in the AML12 mouse liver hepatocytes. It is conceivable that the NDI1 gene is powerful tool for gene therapy of mitochondrial diseases caused by complex I deficiency. In the future, we will attempt to functionally express the NDI1 gene in mouse embryonic stem (mES) cell.

산화적 스트레스에 의한 간세포의 DNA 손상 및 세포사멸 유도에 미치는 원지 에탄올 추출물의 보호 효과 (The Protective Effect of Ethanol Extract of Polygalae Radix against Oxidative Stress-Induced DNA Damage and Apoptosis in Chang Liver Cells)

  • 김홍윤;박철;최영현;황원덕
    • 한방비만학회지
    • /
    • 제19권1호
    • /
    • pp.1-11
    • /
    • 2019
  • Objectives: The purpose of the present study was to evaluate the preventive effects of ethanol extract of Polygalae radix (EEPR) against oxidative stress (hydrogen peroxide, $H_2O_2$)-induced DNA damage and apoptosis in Chang liver cells. Methods: Chang liver cells were pretreated with various concentrations of EEPR and then challenged with 0.5 mM $H_2O_2$. The cell viability and apoptosis were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry analysis, respectively. The levels of reactive oxygen species (ROS), mitochondrial membrane potentials (MMPs) and adenosine tri-phosphate (ATP) contents were measured. Expression levels of Bcl-2 and Bax were also determined using Western blot analysis. Results: The results showed that the decreased survival rate induced by $H_2O_2$ could be attributed to the induction of DNA damage and apoptosis accompanied by the increased production of ROS, which was remarkably protected by EEPR. In addition, the loss of $H_2O_2$-induced MMPs and ATP contents was significantly attenuated in the presence of EEPR. The inhibitory effect of EEPR on $H_2O_2$-induced apoptosis was associated with up-regulation of Bcl-2 and down-regulation of Bax, thus reducing the Bax/Bcl-2 ratio. Conclusions: Our data prove that EEPR protects Chang liver cells against $H_2O_2$-induced DNA damage and apoptosis by scavenging ROS and thus suppressing the mitochondrial-dependent apoptosis pathway.

산양삼(Wild-Simulated Ginseng)의 비알코올성 지방간 억제활성 (Inhibitory Activity of Wild-Simulated Ginseng against Non-Alcoholic Fatty Liver Disease in HepG-2 Cells)

  • 박소정;엄유리;최민영;정진부
    • 한국자원식물학회지
    • /
    • 제36권1호
    • /
    • pp.26-31
    • /
    • 2023
  • 간세포 내 LXRα활성화는 전사조절인자인 SREBP-1c의 발현을 증가시키고, 발현된 SREBP-1c는 핵내로 이동하여 지질형성 관련 유전자인 FAS, ACC, SCD-1 등의 프로모토에 결합하여 FAS, ACC, SCD-1을 유도하여 중성지질의 합성을 활성화시켜 비알코올성 지방간을 초래한다. 그러나 산양삼은 LKB1 그리고 연속적으로 AMPK의 활성화을 유도하여 SREBP-1c의 발현 억제를 통해 FAS, ACC, SCD-1의 발현을 감소시켜 간세포 내 지질 및 중성지질의 축적을 억제하는 것으로 판단된다. 본 결과를 미루어 볼 때, 산양삼은 비알코올성 지방간을 예방하기 위한 건강기능성 식품소재로 개발로 활용될 수 있을 것으로 판단된다.