Browse > Article
http://dx.doi.org/10.14348/molcells.2019.2283

Attenuation of Experimental Autoimmune Hepatitis in Mice with Bone Mesenchymal Stem Cell-Derived Exosomes Carrying MicroRNA-223-3p  

Lu, Feng-Bin (Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology)
Chen, Da-Zhi (Department of Gastroenterology, The First Hospital of Peking University)
Chen, Lu (Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology)
Hu, En-De (Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology)
Wu, Jin-Lu (Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology)
Li, Hui (Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology)
Gong, Yue-Wen (College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba)
Lin, Zhuo (Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology)
Wang, Xiao-Dong (Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology)
Li, Ji (Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology)
Jin, Xiao-Ya (Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology)
Xu, Lan-Man (Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology)
Chen, Yong-Ping (Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology)
Abstract
MicroRNA-223-3p (miR-223-3p) is one of the potential microRNAs that have been shown to alleviate inflammatory responses in pre-clinical investigations and is highly encased in exosomes derived from bone mesenchymal stem cells (MSC-exosomes). MSC-exosomes are able to function as carriers to deliver microRNAs into cells. Autoimmune hepatitis is one of the challenging liver diseases with no effective treatment other than steroid hormones. Here, we examined whether MSC-exosomes can transfer miR-223-3p to treat autoimmune hepatitis in an experimental model. We found that MSC-exosomes were successfully incorporated with miR-223-3p and delivered miR-223-3p into macrophages. Moreover, there was no toxic effect of exosomes on the macrophages. Furthermore, treatments of either exosomes or exosomes with miR-223-3p successfully attenuated inflammatory responses in the liver of autoimmune hepatitis and inflammatory cytokine release in both the liver and macrophages. The mechanism may be related to the regulation of miR-223-3p level and STAT3 expression in the liver and macrophages. These results suggest that MSC-exosomes can be used to deliver miR-223-3p for the treatment of autoimmune hepatitis.
Keywords
autoimmune liver disease; exosomes; immunomodulatory; mesenchymal stromal cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Longhi, M.S., Ma, Y., Mieli-Vergani, G., and Vergani, D. (2010). Aetiopathogenesis of autoimmune hepatitis. J. Autoimmun. 34, 7-14.   DOI
2 Longhi, M.S., Mitry, R.R., Samyn, M., Scalori, A., Hussain, M.J., Quaglia, A., Mieli-Vergani, G., Ma, Y., and Vergani, D. (2009). Vigorous activation of monocytes in juvenile autoimmune liver disease escapes the control of regulatory T-cells. Hepatology 50, 130-142.   DOI
3 Lyu, L., Wang, H., Li, B., Qin, Q., Qi, L., Nagarkatti, M., Nagarkatti, P., Janicki, J.S., Wang, X.L., and Cui, T. (2015). A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes. J. Mol. Cell. Cardiol. 89, 268-279.   DOI
4 Maggiore, G., De Benedetti, F., Massa, M., Pignatti, P., and Martini, A. (1995). Circulating levels of interleukin-6, interleukin-8, and tumor necrosis factor-alpha in children with autoimmune hepatitis. J. Pediatr. Gastroenterol. Nutr. 20, 23-27.   DOI
5 Manns, M.P., Czaja, A.J., Gorham, J.D., Krawitt, E.L., Mieli-Vergani, G., Vergani, D., and Vierling, J.M. (2010). Diagnosis and management of autoimmune hepatitis. Hepatology 51, 2193-2213.   DOI
6 Meirelles Lda, S. and Nardi, N.B. (2003). urine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. Br. J. Haematol. 123, 702-711.   DOI
7 Peiseler, M., Sebode, M., Franke, B., Wortmann, F., Schwinge, D., Quaas, A., Baron, U., Olek, S., Wiegard, C., Lohse, A.W., et al. (2012). FOXP3+ regulatory T cells in autoimmune hepatitis are fully functional and not reduced in frequency. J. Hepatol. 57, 125-132.   DOI
8 Raposo, G. and Stoorvogel, W. (2013). Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373-383.   DOI
9 Sadallah, S., Eken, C., and Schifferli, J.A. (2011). Ectosomes as modulators of inflammation and immunity. Clin. Exp. Immunol. 163, 26-32.   DOI
10 Selvarajah, V., Montano-Loza, A.J., and Czaja, A.J. (2012). Systematic review: managing suboptimal treatment responses in autoimmune hepatitis with conventional and nonstandard drugs. Aliment. Pharmacol. Ther. 36, 691-707.   DOI
11 Shigemoto-Kuroda, T., Oh, J.Y., Kim, D.K., Jeong, H.J., Park, S.Y., Lee, H.J., Park, J.W., Kim, T.W., An, S.Y., Prockop, D.J., et al. (2017). MSC-derived extracellular vesicles attenuate immune responses in two autoimmune murine models: type 1 diabetes and uveoretinitis. Stem Cell Reports 8, 1214-1225.   DOI
12 Taibi, F., Metzinger-Le Meuth, V., Massy, Z.A., and Metzinger, L. (2014). miR-223: An inflammatory oncomiR enters the cardiovascular field. Biochim. Biophys. Acta 1842, 1001-1009.   DOI
13 Tan, C.Y., Lai, R.C., Wong, W., Dan, Y.Y., Lim, S.K., and Ho, H.K. (2014). Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res. Ther. 5, 76.   DOI
14 Thery, C., Amigorena, S., Raposo, G., and Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. Chapter 3, Unit 3.22.
15 Wang, L., Du, H., Liu, Y., Wang, L., Ma, X., and Zhang, W. (2015a). Chinese medicine bu xu hua yu recipe for the regulation of treg/th17 ratio imbalance in autoimmune hepatitis. Evid. Based Complement. Alternat. Med. 2015, 461294.
16 Wang, Y., Han, Z.B., Song, Y.P., and Han, Z.C. (2012). Safety of mesenchymal stem cells for clinical application. Stem Cells Int. 2012, 652034.   DOI
17 Wang, X., Gu, H., Qin, D., Yang, L., Huang, W., Essandoh, K., Wang, Y., Caldwell, C.C., Peng, T., Zingarelli, B., et al. (2015b). Exosomal miR-223 contributes to mesenchymal stem cell-elicited cardioprotection in polymicrobial sepsis. Sci. Rep. 5, 13721.   DOI
18 Wang, X., Huang, W., Yang, Y., Wang, Y., Peng, T., Chang, J., Caldwell, C.C., Zingarelli, B., and Fan, G.C. (2014). Loss of duplexmiR-223 (5p and 3p) aggravates myocardial depression and mortality in polymicrobial sepsis. Biochim. Biophys. Acta 1842, 701-711.   DOI
19 Wang, X., Zingarelli, B., O'Connor, M., Zhang, P., Adeyemo, A., Kranias, E.G., Wang, Y., and Fan, G.C. (2009). Overexpression of Hsp20 prevents endotoxin-induced myocardial dysfunction and apoptosis via inhibition of NF-kappaB activation. J. Mol. Cell. Cardiol. 47, 382-390.   DOI
20 Xin, H., Li, Y., Buller, B., Katakowski, M., Zhang, Y., Wang, X., Shang, X., Zhang, Z.G., and Chopp, M. (2012). Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 30, 1556-1564.   DOI
21 Xin, H., Li, Y., Liu, Z., Wang, X., Shang, X., Cui, Y., Zhang, Z.G., and Chopp, M. (2013). MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells 31, 2737-2746.   DOI
22 Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T.B., Oukka, M., Weiner, H.L., and Kuchroo, V.K. (2006). Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235-238.   DOI
23 Yu, B., Kim, H.W., Gong, M., Wang, J., Millard, R.W., Wang, Y., Ashraf, M., and Xu, M. (2015). Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int. J. Cardiol. 182, 349-360.   DOI
24 Zhao, L., Tang, Y., You, Z., Wang, Q., Liang, S., Han, X., Qiu, D., Wei, J., Liu, Y., Shen, L., et al. (2011). Interleukin-17 contributes to the pathogenesis of autoimmune hepatitis through inducing hepatic interleukin-6 expression. PLoS One 6, e18909.   DOI
25 Zhao, R., Zhou, H., and Su, S.B. (2013). A critical role for interleukin-$1{\beta}$ in the progression of autoimmune diseases. Int. Immunopharmacol. 17, 658-669.   DOI
26 Zhao, X., Shi, X., Zhang, Z., Ma, H., Yuan, X., and Ding, Y. (2016). Combined treatment with MSC transplantation and neutrophil depletion ameliorates D-GalN/LPS-induced acute liver failure in rats. Clin. Res. Hepatol. Gastroenterol. 40, 730-738.   DOI
27 Ailawadi, S., Wang, X., Gu, H., and Fan, G.C. (2015). Pathologic function and therapeutic potential of exosomes in cardiovascular disease. Biochim. Biophys. Acta 1852, 1-11.   DOI
28 Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., and Wood, M.J. (2011). Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341-345.   DOI
29 An Haack, I., Derkow, K., Riehn, M., Rentinck, M.N., Kuhl, A.A., Lehnardt, S., and Schott, E. (2015). The role of regulatory CD4 T cells in maintaining tolerance in a mouse model of autoimmune hepatitis. PLoS One 10, e0143715.   DOI
30 Bang, C., Batkai, S., Dangwal, S., Gupta, S.K., Foinquinos, A., Holzmann, A., Just, A., Remke, J., Zimmer, K., Zeug, A., et al. (2014). Cardiac fibroblastderived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J. Clin. Invest. 124, 2136-2146.   DOI
31 Chen, Q., Wang, H., Liu, Y., Song, Y., Lai, L., Han, Q., Cao, X., and Wang, Q. (2012). Inducible microRNA-223 down-regulation promotes TLR-triggered IL-6 and IL-1beta production in macrophages by targeting STAT3. PLoS One 7, e42971.   DOI
32 Du, Z., Wei, C., Cheng, K., Han, B., Yan, J., Zhang, M., Peng, C., and Liu, Y. (2013). Mesenchymal stem cell-conditioned medium reduces liver injury and enhances regeneration in reduced-size rat liver transplantation. J. Surg. Res. 183, 907-915.   DOI
33 Chen, Y., Chen, S., Liu, L., Zou, Z., Cai, Y., Wang, J., Chen, B., Xu, L., Lin, Z., Wang, X., et al. (2014). Mesenchymal stem cells ameliorate experimental autoimmune hepatitis by activation of the programmed death 1 pathway. Immunol. Lett. 162, 222-228.   DOI
34 Chen, Z., Laurence, A., and O'shea, J. (2007). Signal transduction pathways and transcriptional regulation in the control of Th17 differentiatio. Semin. Immunol. 19, 400-408.   DOI
35 Colombo, M., Raposo, G., and Thery, C. (2014). Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255-289.   DOI
36 Costa-Silva, B., Aiello, N.M., Ocean, A.J., Singh, S., Zhang, H., Thakur, B.K., Becker, A., Hoshino, A., Mark, M.T., Molina, H., et al. (2015). Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17, 816-826.   DOI
37 Deknuydt, F., Bioley, G., Valmori, D., and Ayyoub, M. (2009). IL-1beta and IL-2 convert human Treg into T(H)17 cells. Clin. Immunol. 131, 298-307.   DOI
38 Eisenstein, E.M. and Williams, C.B. (2009). The T(reg)/Th17 cell balance: a new paradigm for autoimmunity. Pediatr. Res. 65, 26R-31R.   DOI
39 Eldh, M., Ekstrom, K., Valadi, H., Sjostrand, M., Olsson, B., Jernas, M., and Lotvall, J. (2010). Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PLoS One 5, e15353.   DOI
40 Gatti, S., Bruno, S., Deregibus, M.C., Sordi, A., Cantaluppi, V., Tetta, C., and Camussi, G. (2011). Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol. Dial. Transplant. 26, 1474-1483.   DOI
41 Hammerich, L., Heymann, F., and Tacke, F. (2011). Role of IL-17 and Th17 cells in liver diseases. Clin. Dev. Immunol. 2011, 345803.
42 Le Blanc, K. and Mougiakakos, D. (2012). Multipotent mesenchymal stromal cells and the innate immune system. Nat. Rev. Immunology 12, 383-396.   DOI
43 Heneghan, M.A., Yeoman, A.D., Verma, S., Smith, A.D., and Longhi, M.S. (2013). Autoimmune hepatitis. Lancet 382, 1433-1444.   DOI
44 Kato, M., Ikeda, N., Matsushita, E., Kaneko, S., and Kobayashi, K. (2001). Involvement of IL-10, an anti-inflammatory cytokine in murine liver injury induced by Concanavalin A. Hepatol. Res. 20, 232-243.   DOI
45 Kordelas, L., Rebmann, V., Ludwig, A.K., Radtke, S., Ruesing, J., Doeppner, T.R., Epple, M., Horn, P.A., Beelen, D.W., and Giebel, B. (2014). MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 28, 970-973.   DOI
46 Li, M., He, Y., Zhou, Z., Ramirez, T., Gao, Y., Gao, Y., Ross, R.A., Cao, H., Cai, Y., Xu, M., et al. (2017). MicroRNA-223 ameliorates alcoholic liver injury by inhibiting the IL-6-p47phox-oxidative stress pathway in neutrophils. Gut 66, 705-715.   DOI
47 Lin, R., Zhang, J., Zhou, L., and Wang, B. (2016). Altered function of monocytes/macrophages in patients with autoimmune hepatitis. Mol. Med. Rep. 13, 3874-3880.   DOI
48 Lohse, A., Dienes, H.P., and Buschenfelde, K.H.M.Z. (1998). Suppression of murine experimental autoimmune hepatitis by T-cell vaccination or immunosuppression. Hepatology 27, 1536-1543.   DOI
49 Lohse, A.W., Manns, M., Dienes, H.P., Meyer zum Buschenfelde, K.H., and Cohen, I.R. (1990). Experimental autoimmune hepatitis: disease induction, time course and T-cell reactivity. Hepatology 11, 24-30.   DOI