DOI QR코드

DOI QR Code

The Protective Effect of Ethanol Extract of Polygalae Radix against Oxidative Stress-Induced DNA Damage and Apoptosis in Chang Liver Cells

산화적 스트레스에 의한 간세포의 DNA 손상 및 세포사멸 유도에 미치는 원지 에탄올 추출물의 보호 효과

  • Kim, Hong Yun (Department of Internal Medicine, College of Korean Medicine, Dong-Eui University) ;
  • Park, Cheol (Department of Molecular Biology, College of Natural Sciences, Dong-Eui University) ;
  • Choi, Yung Hyun (Department of Biochemistry, College of Korean Medicine, Dong-Eui University) ;
  • Hwang, Won-Deok (Department of Internal Medicine, College of Korean Medicine, Dong-Eui University)
  • 김홍윤 (동의대학교 한의과대학 내과학교실) ;
  • 박철 (동의대학교 자연과학대학 분자생물학과) ;
  • 최영현 (동의대학교 한의과대학 생화학교실) ;
  • 황원덕 (동의대학교 한의과대학 내과학교실)
  • Received : 2019.04.09
  • Accepted : 2019.05.24
  • Published : 2019.06.30

Abstract

Objectives: The purpose of the present study was to evaluate the preventive effects of ethanol extract of Polygalae radix (EEPR) against oxidative stress (hydrogen peroxide, $H_2O_2$)-induced DNA damage and apoptosis in Chang liver cells. Methods: Chang liver cells were pretreated with various concentrations of EEPR and then challenged with 0.5 mM $H_2O_2$. The cell viability and apoptosis were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry analysis, respectively. The levels of reactive oxygen species (ROS), mitochondrial membrane potentials (MMPs) and adenosine tri-phosphate (ATP) contents were measured. Expression levels of Bcl-2 and Bax were also determined using Western blot analysis. Results: The results showed that the decreased survival rate induced by $H_2O_2$ could be attributed to the induction of DNA damage and apoptosis accompanied by the increased production of ROS, which was remarkably protected by EEPR. In addition, the loss of $H_2O_2$-induced MMPs and ATP contents was significantly attenuated in the presence of EEPR. The inhibitory effect of EEPR on $H_2O_2$-induced apoptosis was associated with up-regulation of Bcl-2 and down-regulation of Bax, thus reducing the Bax/Bcl-2 ratio. Conclusions: Our data prove that EEPR protects Chang liver cells against $H_2O_2$-induced DNA damage and apoptosis by scavenging ROS and thus suppressing the mitochondrial-dependent apoptosis pathway.

Keywords

References

  1. May BH, Lu C, Lu Y, Zhang AL, Xue CC. Chinese herbs for memory disorders: a review and systematic analysis of classical herbal literature. J Acupunct Meridian Stud. 2013 ; 6(1) : 2-11. https://doi.org/10.1016/j.jams.2012.11.009
  2. Cao Q, Jiang Y, Cui SY, Tu PF, Chen YM, Ma XL, et al. Tenuifolin, a saponin derived from Radix Polygalae, exhibits sleep-enhancing effects in mice. Phytomedicine. 2016 ; 23(14) : 1797-805. https://doi.org/10.1016/j.phymed.2016.10.015
  3. Kim KS, Lee DS, Bae GS, Park SJ, Kang DG, Lee HS, et al. The inhibition of JNK MAPK and NF-${\kappa}B$ signaling by tenuifoliside A isolated from Polygala tenuifolia in lipopolysaccharide-induced macrophages is associated with its anti-inflammatory effect. Eur J Pharmacol. 2013 ; 721(1-3) : 267-76. https://doi.org/10.1016/j.ejphar.2013.09.026
  4. Sun XL, Ito H, Masuoka T, Kamei C, Hatano T. Effect of Polygala tenuifolia root extract on scopolamine-induced impairment of rat spatial cognition in an eight-arm radial maze task. Biol Pharm Bull. 2007 ; 30(9) : 1727-31. https://doi.org/10.1248/bpb.30.1727
  5. Kawashima K, Miyako D, Ishino Y, Makino T, Saito K, Kano Y. Anti-stress effects of 3,4,5-trimethoxycinnamic acid, an active constituent of roots of Polygala tenuifolia (Onji) Biol Pharm Bull. 2004 ; 27(8) : 1317-9. https://doi.org/10.1248/bpb.27.1317
  6. Chung IW, Moore NA, Oh WK, O'Neill MF, Ahn JS, Park JB, et al. Behavioural pharmacology of polygalasaponins indicates potential antipsychotic efficacy. Pharmacol Biochem Behav. 2002 ; 71(1-2) : 191-5. https://doi.org/10.1016/S0091-3057(01)00648-7
  7. Shin JY, Shin JW, Ha SK, Kim Y, Swanberg KM, Lee S, et al. Radix Polygalae extract attenuates PTSD-like symptoms in a mouse model of single prolonged stress and conditioned fear possibly by reversing BAG1. Exp Neurobiol. 2018 ; 27(3) : 200-9. https://doi.org/10.5607/en.2018.27.3.200
  8. Naito R, Tohda C. Characterization of anti-neurodegenerative effects of Polygala tenuifolia in Abeta(25-35)-treated cortical neurons. Biol Pharm Bull. 2006 ; 29(9) : 1892-6. https://doi.org/10.1248/bpb.29.1892
  9. Ikeya Y, Takeda S, Tunakawa M, Karakida H, Toda K, Yamaguchi T, et al. Cognitive improving and cerebral protective effects of acylated oligosaccharides in Polygala tenuifolia. Biol Pharm Bull. 2004 ; 27(7) : 1081-5. https://doi.org/10.1248/bpb.27.1081
  10. Liu P, Hu Y, Guo DH, Wang DX, Tu HH, Ma L, et al. Potential antidepressant properties of Radix Polygalae (Yuan Zhi). Phytomedicine. 2010 ; 17(10) : 794-9. https://doi.org/10.1016/j.phymed.2010.01.004
  11. Hu Y, Liao HB, Dai-Hong G, Liu P, Wang YY, Rahman K. Antidepressant-like effects of 3,6'-disinapoyl sucrose on hippocampal neuronal plasticity and neurotrophic signal pathway in chronically mild stressed rats. Neurochem Int. 2010 ; 56(3) : 461-5. https://doi.org/10.1016/j.neuint.2009.12.004
  12. de Campos RO, Santos AR, Vaz ZR, Pinheiro TR, Pizzolatti MG, Cechinel Filho V, et al. Antinociceptive properties of the hydroalcoholic extract and preliminary study of a xanthone isolated from Polygala cyparissias (Polygalaceae). Life Sci. 1997 ; 61(16) : 1619-30. https://doi.org/10.1016/S0024-3205(97)00741-8
  13. Hwang JY, Wu YX, Hwang DI, Bae SJ, Kim T. Antiobesity effect of Polygala tenuifolia. Korean J Food Preserv. 2014 ; 21(1) : 97-106. https://doi.org/10.11002/kjfp.2014.21.1.97
  14. Choi JG, Kim HG, Kim MC, Yang WM, Huh Y, Kim SY, et al. Polygalae radix inhibits toxin-induced neuronal death in the Parkinson's disease models. J Ethnopharmacol. 2011 ; 134(2) : 414-21. https://doi.org/10.1016/j.jep.2010.12.030
  15. Lee HJ, Ban JY, Koh SB, Seong NS, Song KS, Bae KW, et al. Polygalae radix extract protects cultured rat granule cells against damage induced by NMDA. Am J Chin Med. 2004 ; 32(4) : 599-610. https://doi.org/10.1142/S0192415X04002235
  16. Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol. 2018 ; 80(1) : 50-64. https://doi.org/10.1016/j.semcdb.2017.05.023
  17. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev. 2017 ; 2017 : 8416763.
  18. Zimmermann M, Reichert AS. How to get rid of mitochondria: crosstalk and regulation of multiple mitophagy pathways. Biol Chem. 2017 ; 399(1) : 29-45. https://doi.org/10.1515/hsz-2017-0206
  19. Rigoulet M, Yoboue ED, Devin A. Mitochondrial ROS generation and its regulation: mechanisms involved in H2O2 signaling. Antioxid Redox Signal. 2011 ; 14(3) : 459-68. https://doi.org/10.1089/ars.2010.3363
  20. Sosa V, Moline T, Somoza R, Paciucci R, Kondoh H, LLeonart ME. Oxidative stress and cancer: an overview. Ageing Res Rev. 2013 ; 12(1) : 376-90. https://doi.org/10.1016/j.arr.2012.10.004
  21. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000 ; 408(6809) : 239-47. https://doi.org/10.1038/35041687
  22. Garcia-Ruiz C, Fernandez-Checa JC. Mitochondrial oxidative stress and antioxidants balance in fatty liver disease. Hepatol Commun. 2018 ; 2(12) : 1425-39. https://doi.org/10.1002/hep4.1271
  23. Engin A. Non-alcoholic fatty liver disease. Adv Exp Med Biol. 2017 ; 960 : 443-67. https://doi.org/10.1007/978-3-319-48382-5_19
  24. Richter K, Kietzmann T. Reactive oxygen species and fibrosis: further evidence of a significant liaison. Cell Tissue Res. 2016 ; 365(3) : 591-605. https://doi.org/10.1007/s00441-016-2445-3
  25. Van Houten B, Woshner V, Santos JH. Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair (Amst). 2006 ; 5(2) : 145-52. https://doi.org/10.1016/j.dnarep.2005.03.002
  26. Paracha UZ, Fatima K, Alqahtani M, Chaudhary A, Abuzenadah A, Damanhouri G, et al. Oxidative stress and hepatitis C virus. Virol J. 2013 ; 10 : 251. https://doi.org/10.1186/1743-422X-10-251
  27. Meynard D, Babitt JL, Lin HY. The liver: conductor of systemic iron balance. Blood. 2014 ; 123(2) : 168-76. https://doi.org/10.1182/blood-2013-06-427757
  28. Tian X, He W, Yang R, Liu Y. Dl-3-n-butylphthalide protects the heart against ischemic injury and H9c2 cardiomyoblasts against oxidative stress: involvement of mitochondrial function and biogenesis. J Biomed Sci. 2017 ; 24(1) : 38. https://doi.org/10.1186/s12929-017-0345-9
  29. Valero T. Mitochondrial biogenesis: pharmacological approaches. Curr Pharm Des. 2014 ; 20(35) : 5507-9. https://doi.org/10.2174/138161282035140911142118
  30. Kulikov AV, Shilov ES, Mufazalov IA, Gogvadze V, Nedospasov SA, Zhivotovsky B. Cytochrome c: the Achilles' heel in apoptosis. Cell Mol Life Sci. 2012 ; 69(11) : 1787-97. https://doi.org/10.1007/s00018-011-0895-z
  31. Afanasieva K, Sivolob A. Physical principles and new applications of comet assay. Biophys Chem. 2018 ; 238(1) : 1-7. https://doi.org/10.1016/j.bpc.2018.04.003
  32. Siddiqui MS, Francois M, Fenech MF, Leifert WR. Persistent $\gamma$H2AX: A promising molecular marker of DNA damage and aging. Mutat Res Rev Mutat Res. 2015 ; 766(1) : 1-19. https://doi.org/10.1016/j.mrrev.2015.07.001
  33. Turinetto V, Giachino C. Multiple facets of histone variant H2AX: a DNA double-strand-break marker with several biological functions. Nucleic Acids Res. 2015 ; 43(5) : 2489-98. https://doi.org/10.1093/nar/gkv061
  34. Jaeschke H, McGill MR, Ramachandran A. Oxidant stress, mitochondria, and cell death mechanisms in druginduced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev. 2012 ; 44(1) : 88-106. https://doi.org/10.3109/03602532.2011.602688
  35. Pessayre D, Mansouri A, Berson A, Fromenty B. Mitochondrial involvement in drug-induced liver injury. Handb Exp Pharmacol. 2010 ; 196 : 311-65. https://doi.org/10.1007/978-3-642-00663-0_11
  36. Grattagliano I, Bonfrate L, Diogo CV, Wang HH, Wang DQ, Portincasa P. Biochemical mechanisms in drug-induced liver injury: certainties and doubts. World J Gastroenterol. 2009 ; 15(39) : 4865-76. https://doi.org/10.3748/wjg.15.4865
  37. Tummers B, Green DR. Caspase-8: regulating life and death. Immunol Rev. 2017 ; 277(1) : 76-89. https://doi.org/10.1111/imr.12541
  38. Schultz DR, Harrington WJ Jr. Apoptosis: programmed cell death at a molecular level. Semin Arthritis Rheum. 2003 ; 32(6) : 345-69. https://doi.org/10.1053/sarh.2003.50005
  39. Kiraz Y, Adan A, Kartal Yandim M, Baran Y. Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol. 2016 ; 37(7) : 8471-86. https://doi.org/10.1007/s13277-016-5035-9
  40. Gustafsson AB, Gottlieb RA. Bcl-2 family members and apoptosis, taken to heart. Am J Physiol Cell Physiol. 2007 ; 292(1) : C45-51. https://doi.org/10.1152/ajpcell.00229.2006
  41. Imahashi K, Schneider MD, Steenbergen C, Murphy E. Transgenic expression of Bcl-2 modulates energy metabolism, prevents cytosolic acidification during ischemia, and reduces ischemia/reperfusion injury. Circ Res. 2004 ; 95(7) : 734-41. https://doi.org/10.1161/01.RES.0000143898.67182.4c
  42. Basu C, Sur R. S-allyl cysteine alleviates hydrogen peroxide induced oxidative injury and apoptosis through upregulation of Akt/Nrf-2/HO-1 signaling pathway in HepG2 cells. Biomed Res Int. 2018 ; 2018 : 3169431. https://doi.org/10.1155/2018/3169431
  43. Qi G, Liu Z, Fan R, Yin Z, Mi Y, Ren B, et al. Athyrium multidentatum (Doll.) Ching extract induce apoptosis via mitochondrial dysfunction and oxidative stress in HepG2 cells. Sci Rep. 2017 ; 7(1) : 2275. https://doi.org/10.1038/s41598-017-02573-8
  44. Zhao H, Meng W, Li Y, Liu W, Fu B, Yang Y, et al. The protective effects of CHIR99021 against oxidative injury in LO2 cells. Pharmazie. 2016 ; 71(11) : 629-35.

Cited by

  1. 최근 10년간 한방비만학회지의 연구동향 분석: 2010-2019년 한방비만학회지 게재논문을 중심으로 vol.20, pp.2, 2019, https://doi.org/10.15429/jkomor.2020.20.2.149