• Title/Summary/Keyword: lithography

Search Result 1,304, Processing Time 0.036 seconds

Role of a PVA layer During lithography of SnS2 thin Films Grown by Atomic layer Deposition

  • Ham, Giyul;Shin, Seokyoon;Lee, Juhyun;Lee, Namgue;Jeon, Hyeongtag
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.41-45
    • /
    • 2018
  • Two-dimensional (2D) materials have been studied extensively due to their excellent physical, chemical, and electrical properties. Among them, we report the material and device characteristics of tin disulfide ($SnS_2$). To apply $SnS_2$ as a channel layer in a transistor, $SnS_2$ channels were formed by a stripping method and a transfer method. The limitation of this method is that it is difficult to produce uniform device characteristics over a large area. Therefore, we directly deposited $SnS_2$ by atomic layer deposition (ALD) and then performed lithography. This method was able to produce devices with repeatable characteristics over a large area. However, the $SnS_2$ film was damaged by the acetone used as a photoresist (PR) developer during the lithography process, with the electrical properties of mobility of $2.6{\times}10^{-4}cm^2/Vs$, S.S. of 58.1 V/decade, and on/off current ratio of $1.8{\times}10^2$. These results are not suitable for advanced electronic devices. In this study, we analyzed the effect of acetone on $SnS_2$ and studied the device process to prevent such damage. Using polyvinyl alcohol (PVA) as a passivation layer during the lithography process, the electrical characteristics of the $SnS_2$ transistor had $2.11{\times}10^{-3}cm^2/Vs$ of mobility, 11.3 V/decade of S.S, and $2.5{\times}10^3$ of the on/off current ratio, which were 10x improvements to the $SnS_2$ transistor fabricated by the conventional method.

Cost-Effective Soft Lithography of Organic Semiconductors in OFETs with Compact Discs as Master Molds (Compact Disc를 마스터 몰드로 사용하는 저비용의 OFET용 유기반도체 소프트 리소그래피)

  • Sejin Park;Hyukjin Kim;Tae Kyu An
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.116-121
    • /
    • 2022
  • OFET have require fine patterning technology for organic semiconductor solution process to be used in actual electronics. In this study, we compared and analyzed the soft lithography method which can form fine patterns more than the conventional spin coating method in order to confirm that it can have better electrical characteristics. The soft lithography method produced a flexible master mold using nano patterns on compact disc surfaces and obtained a 650 nm wide 2,7-Dioctyl [1] benzothieno [3,2-b] [1] benzo thiophene (C8-BTBT) nanowires. As a result, the field-effect mobility of devices fabricated by the spin coating method was 0.0036 cm2/Vs and mobility of devices produced by soft lithography method was 0.086 cm2/Vs, which was about 20 times higher than spin-coated devices and has better electrical performance.

LCD Photo-mask Using Commercial LCD Panel (상용 LCD 패널을 이용한 광 마스크 제작)

  • Lee, Seung-Ik;Koh, Jeongh-Hyun;Lee, Sang-Young;Park, Jang-Ho;Soh, Dea-Wha
    • Journal of the Speleological Society of Korea
    • /
    • no.77
    • /
    • pp.21-30
    • /
    • 2007
  • Photo-lithography lies in the middle of the wafer fabrication process. It is often considered as the most critical step in the IC process. We use a mask in exposure steps of the photo-lithography. Typically, 20 to 25 different levels of masks are required to complete an IC device. That means, if a photo process can be developed with the use of only one photo mask, we can reduce more process cost. To satisfy this, we plan to develop an alternative photo mask. For this reason, we chose to use a LCD. We expect to develop a LCD panel that can be changed by electrical control. This is the main idea about the adjustive photo mask. The Photo mask made of LCD panel will replace the former one.

Improvement of Extraction Efficiency of OLED by Nanosphere Lithography (나노스피어 리소그라피를 이용한 OLED 광추출 효율의 향상)

  • Han, Gwang-Min;Yeo, Jong-Bin;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.12
    • /
    • pp.1002-1009
    • /
    • 2011
  • The light extraction efficiency of top-emitting organic light-emitting diode (OLED) was improved by insertion of corrugation patterns between indium tin oxide and organic layers. The corrugation patterns was fabricated by nanosphere lithography, which could form a self-assembled particle monolayer over a large area. The electrical and optical properties for the OLED devices fabricated by vacuum evaporation, were investigated. We have demonstrated the enhancement of the power efficiency of corrugated OLED. As a result, the power efficiency of the corrugated OLED was found to be more than 42%.

Micro Patterning Using Active Polymer Pen Array (능동 폴리머 펜 어래이를 이용한 미세 패터닝)

  • Han, Yoonsoo;Hong, Jihwa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.853-857
    • /
    • 2013
  • We design, develope and test a parallel active polymer pen lithography (PPL) device, which consists of individually addressable elastomeric probe tips. The PPL array chip is fabricated using soft lithography method with polydimethylsiloxane (PDMS) material. Individual probe can be pneumatically actuated via a computer controlled interface. We demonstrate parallel writing with 16 individually addressed pens, with each pen producing a different pattern in the same run. The largest proof-of-concept array fabricated is $4{\times}4$ with a spacing of $250{\mu}m$ in both x and y axes.

Nanoscale Fluoropolymer Pattern Fabrication by Capillary Force Lithography for Selective Deposition of Copper

  • Baek, Jang-Mi;Lee, Rin;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.369-369
    • /
    • 2012
  • The present work deals with selective deposition of copper on fluoropolymers patterned silicon (111) surfaces. The pattern of fluoropolymer was fabricated by nanoimprint lithography (NIL) and plasma reactive ion etching (RIE) was used to remove the residuals layers. Copper was electrochemically deposited in bare Si regions which were not covered with fluoropolymers. The patterns of fluoropolymers and copper have been investigated by scanning electron microscopy (SEM). In this work, we used two deposition methods. One is galvanic displacement method and another is electrodeposition. Selective deposition works in both cases and it shows applicability to other materials. By optimization of the deposition conditions can be achieved therefore this process represents a simple approach for a direct high resolution patterning of silicon surfaces.

  • PDF

UV nanoimprint lithography using a multi-dispensing method (다중 디스펜싱 방법에 의한 UV-나노임프린트 리소그래피)

  • 심영석;손현기;신영재;이응숙;정준호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.604-610
    • /
    • 2004
  • Ultraviolet-nanoimprint lithography (UV-NIL) is a promising method for cost-effectively defining nanoscale structures at room temperature and low pressure. Since the resolution of transferred nanostructures depends strongly upon that of nanostamps, the nanostamp fabrication technology is a key technology to UV-NIL. In this paper, a $5\times5\times0.09$ in. quartz stamp whose critical dimension is 377 nm was fabricated using the etching process in which a Cr film was employed as a hard mask for transferring nanostructures onto the quartz plate. To effectively apply the fabricated 5-in. stamp to UV-NIL on a 4-in. Si wafer, we have proposed a new UV-NIL process using a multi-dispensing method as a way to supply resist on a wafer. Experiments have shown that the multi-dispensing method can enable UV-NIL using a large-area stamp.

Sub-100nm Hybrid stamp fabrication by Hot embossing (Hot embossing 공정을 이용한 100nm 급 Hybrid stamp 제작)

  • Hong S.H.;Yang K.Y.;Lee Heon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1168-1170
    • /
    • 2005
  • Nanoimprint Lithography(NIL) has increasingly been recognized as a key manufacturing technology for nanosized feature. One of the most important task for nanoimprint lithography is to provide the imprinting stamp with low price. The Stamp fabricated with Si based material by e-beam lithography, RIE is extremely expensive and its throughput is very limited and PDMS replica is too soft to hold high imprinting pressure.(>5atm) In this study, we present the imprinting stamp which can be easily replicated from original mold and is based on PVC film. Replication of original Si mold to PVC film was done by Hot embossing technique, ($120^{\circ}C$ of Temperature, 20 atm applied) As small as 100nm patterns were successfully transferred into PVC film. The size of stamp was up to 100mm in diameter.

  • PDF

Leakage Analysis of Air Bearing for Vacuum Environment (진공환경용 공기베어링의 Leakage 해석)

  • 김경호;박천홍;이후상;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.912-915
    • /
    • 2004
  • A vacuum environment is very important for NGL(Next Generation Lithography) apparatuses such as EUVL(Extreme Ultra Violet Lithography) or EPL(Electron Projection Lithography) and so on. The performance of these systems is dominated by vacuum level of processing and positioning accuracy of a stage. So, ultra-precision stage usable in a high vacuum level is needed for the improved performance of these devices. In contrast to atmospheric condition, a special attention must be paid to guide bearing, actuator and other elements. In this paper, air bearing is adopted because of its very high motional accuracy. So, air bearing is designed to be vacuum compatible using differential exhaust method, which prevents air from entering into vacuum chamber. For this, leakage analysis is performed theoretically and verified from experiment.

  • PDF

Parametric Study for a Diffraction Optics Fabrication by Using a Direct Laser Lithographic System (회절광학소자 제작을 위한 레이저 직접 노광기의 공정실험)

  • Kim, Young-Gwang;Rhee, Hyug-Gyo;Ghim, Young-Sik;Lee, Yun-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.845-850
    • /
    • 2016
  • A direct laser lithography system is widely used to fabricate various types of DOEs (Diffractive Optical Elements) including lenses made as CGH (Computer Generated Hologram). However, a parametric study that uniformly and precisely fabricates the diffractive patterns on a large area (up to $200mm{\times}200mm$) has not yet been reported. In this paper, four parameters (Focal Position Error, Intensity Variation of the Lithographic Beam, Patterning Speed, and Etching Time) were considered for stabilization of the direct laser lithography system, and the experimental results were presented.