• Title/Summary/Keyword: lithium batteries

Search Result 1,061, Processing Time 0.028 seconds

Electrochemical Properties of 1,1-Dialkyl-2,5-bis(trimethylsilylethynyl)siloles as Anode Active Material and Solid-state Electrolyte for Lithium-ion Batteries

  • Hyeong Rok Si;Young Tae Park
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.6
    • /
    • pp.429-440
    • /
    • 2023
  • 1,1-Dialkyl-2,5-bis(trimethylsilylethynyl)-3,4-diphenylsiloles (R=Et, i-Pr, n-Hex; 3a-c) were prepared and utilized as anode active materials for lithium-ion batteries; 3a was also used as a filler for the solid-state electrolytes (SSE). Siloles 3a-c were prepared by substitution reactions in which the two bromine groups of 1,1-dialkyl-2,5-dibromo-3,4-diphe- nylsiloles, used as precursors, were substituted with trimethylsilylacetylene in the presence of palladium chloride, copper iodide, and triphenylphosphine in diisopropylamine. Among siloles 3a-c, 3a had the best electrochemical properties as an anode material for lithium-ion batteries, including an initial capacity of 758 mAhg-1 (0.1 A/g), which was reduced to 547 mAhg-1 and then increased to 1,225 mAhg-1 at 500 cycles. A 3a-composite polymer electrolyte (3a-CPE) was prepared using silole 3a as an additive at concentrations of 1, 2, 3, and 4 wt.%. The 2 wt.% 3a-CPE composite afforded an excellent ionic conductivity of 1.09 × 10-3 Scm-1 at 60℃, indicating that silole 3a has potential applicability as an anode active material for lithium-ion batteries, and can also be used as an additive for the SSE of lithium-ion batteries.

Current Collectors for Flexible Lithium Ion Batteries: A Review of Materials

  • Kim, Sang Woo;Cho, Kuk Young
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • With increasing interest in flexible electronic devices and wearable appliances, flexible lithium ion batteries are the most attractive candidates for flexible energy sources. During the last decade, many different kinds of flexible batteries have been reported. Although research of flexible lithium ion batteries is in its earlier stages, we have found that developing components that satisfy performance conditions under external deformation stress is a critical key to the success of flexible energy sources. Among the major components of the lithium ion battery, electrodes, which are connected to the current collectors, are gaining the most attention owing to their rigid and brittle character. In this mini review, we discuss candidate materials for current collectors and the previous strategies implemented for flexible electrode fabrication.

Improvement of Available Battery Capacity in Electric Vehicles

  • Liu, Yow-Chyi
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.497-506
    • /
    • 2013
  • This paper proposes a new method to improve the available battery capacity in electric vehicles by connecting lead-acid batteries with lithium-ion battery in parallel to supply power. In addition, this method combines the discharge characteristics of batteries to improve their efficiency and lower their cost for electric vehicles. A lithium-ion battery set is used to connect with N sets of lead-acid batteries in parallel. The lead-acid battery supplies the initial power. When the lead-acid battery is discharged by the load current until its output voltage drops to the cut-off voltage, the power management unit controls the lead-acid battery and changes it to discharge continuously with a small current. This discharge can be achieved by connecting the lead-acid battery to a lithium-ion battery in parallel to supply the load power or to discharge its current to another lead-acid or lithium-ion battery. Experimental results demonstrates that the available capacity can be improved by up to 30% of the rated capacity of the lead-acid batteries.

Recent Advances in Cathode and Anode Materials for Lithium Ion Batteries (리튬 이온 배터리용 양극 및 음극 재료의 최근 동향)

  • Nguyen, Van Hiep;Kim, Young Ho
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.635-644
    • /
    • 2018
  • Lithium ion batteries have been broadly used in various applications to our daily life such as portable electronics, electric vehicles and grid-scale energy storage devices. Significant efforts have recently been made on developing electrode materials for lithium ion batteries that meet commercial needs of the high energy density, light weight and low cost. In this review, we summarize the principles and recent research advances in cathode and anode materials for lithium ion batteries, and particularly emphasize electrode material designs and advanced characterization techniques.

Lithium-ion Stationary Battery Capacity Sizing Formula for the Establishment of Industrial Design Standard

  • Chang, Choong-koo;Sulley, Mumuni
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2561-2567
    • /
    • 2018
  • The extension of DC battery backup time in the DC power supply system of nuclear power plants (NPPs) remains a challenge. The lead-acid battery is the most popular at present. And it is generally the most popular energy storage device. However, extension of backup time requires too much space. The lithium-ion battery has high energy density and advanced gravimetric and volumetric properties. The aim of this paper is development of the sizing formula of stationary lithium-ion batteries. The ongoing research activities and related industrial standards for stationary lithium-ion batteries are reviewed. Then, the lithium-ion battery sizing calculation formular is proposed for the establishment of industrial design standard which is essential for the design of stationary batteries of nuclear power plants. An example of calculating the lithium-ion battery capacity for a medium voltage UPS is presented.

Electrochemical Properties of Acetylene Black/Multi-walled Carbon Nanotube Cathodes for Lithium Thionyl Chloride Batteries at High Discharge Currents

  • Song, Hee-Youb;Jung, Moon-Hyung;Jeong, Soon-Ki
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.430-436
    • /
    • 2020
  • Lithium thionyl chloride (Li/SOCl2) batteries exhibit the highest energy densities seen in commercially available primary batteries because of their high operating voltages and discharge capacities. They are widely used in various extreme environments; however, they show signs of degradation at high discharge currents. The discharge performance of Li/SOCl2 is considered to be greatly dependent on the carbon materials used in the cathode. Therefore, suitable carbon materials must be chosen to improve discharge performances. In this work, we investigated the discharge properties of Li/SOCl2 batteries in which the cathodes contained various ratios of acetylene black (AB) and multi-walled carbon nanotubes (MWCNTs) at high discharge currents. It was confirmed that the MWCNTs were effectively dispersed in the mixed AB/MWCNT cathodes. Moreover, the discharge capacity and operating voltage improved at high discharge currents in these mixed cathodes when compared with pure AB cathodes. It was found that the mesopores present in the cathodes have a strong impact on the discharge capacity, while the macropores present on the cathode surface influence the discharge properties at high discharge rates in Li/SOCl2 batteries. These results indicate that the ratio of mesopores and macropores in the cathode is key to improving the discharge performance of Li/SOCl2 batteries, as is the dispersion of the MWCNTs.

Challenges and Design Strategies for Conversion-Based Anode Materials for Lithium- and Sodium-Ion Batteries

  • Kim, Hyunwoo;Kim, Dong In;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.32-53
    • /
    • 2022
  • Although lithium-ion batteries are currently the most reliable power supply system for various mobile applications, further improvement in energy density is still required as the need for batteries in large energy-consuming devices is rapidly growing. However, in the anode, the most widely commercialized graphite-based anode materials almost face theoretical limitations. In addition, sodium-ion batteries have been actively studied to replace expensive charge carriers with cheaper ones. Accordingly, conversion-based materials have been extensively studied as high-capacity anode materials in both lithiumion batteries and sodium-ion batteries because their theoretical capacity is twice or thrice higher than that of insertion-based materials. This review will provide a comprehensive understanding of conversion-based materials, including basic charge storage behaviors, critical drawbacks that should be overcome, and practical material design for high-performance.

Carbonaceous Materials as Anode Materials for Lithium Ion Secondary Batteries

  • Lee, Seung-Bok;Pyun, Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.3
    • /
    • pp.187-195
    • /
    • 2003
  • The present article is concerned with the overview of carbonaceous materials used as anode materials for lithium ion secondary batteries. This article first classified carbonaceous materials into graphite, soft carbon and hard carbon according to their crystal structures, and then summarised the previous works on the characteristics of lithium intercalation/deintercalation into/from the carbonaceous materials. Finally this article reviewed our recent research works on the mechanism of lithium transport through graphite, soft carbon and hard carbon electrodes from the kinetic view point by the analysis of the theoretical and experimental potentiostatic current transients.

Electrochemistry of Conductive Polymers 46. Polymer Films as Overcharge Inhibitors for Lithium-Ion Rechargeable Batteries

  • Choi, Shin-Jung;Park, Su-Moon
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Conducting polymer films grown from various aromatic compounds have been evaluated as overcharge protecting additives for lithium ion rechargeable batteries. The polymer films were grown electrochemically under the conditions similar to those encountered during the overcharging processes of lithium batteries and subsequently characterized by potentiodynamic, electrochemical quartz crystal microbalance, electrochemical impedance spectroscopic, and scanning electron microscopic experiments. Results indicate that bicyclic and polycyclic aromatic hydrocarbons would be poor candidates for inhibitors, while biphenyl, terphenyl, and benzene derivatives displayed excellent performances. Mixed polymer films grown from o-terphenyl and p-xylene show the best performance among the candidates.

MOS-based Gas Sensors for Early Alert of Thermal Runaway in Lithium-ion Batteries

  • Soo Min Lee;Seon Ju Park;Ho Won Jang
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.326-337
    • /
    • 2024
  • The thermal runaway phenomenon in lithium-ion batteries hinders their large-scale application and leads to safety issues, including smoke, fire, and explosion. Therefore, early warning systems must be employed rapidly and reliably to ensure user safety, with methods for detecting gases such as hydrogen, carbon monoxide, and hydrocarbons-all indicators of the thermal runaway process-considered a promising approach. In particular, metal-oxide-semiconductor-based gas sensors can be used to monitor target gases owing to their high response, fast response, and facile integration. In this paper, we review various strategies for enhancing the performance of metal-oxide-semiconductor-based gas sensors, including nanostructure design, catalyst loading, and composite design. Future perspectives on employing metal-oxide-semiconductor-based gas sensors to monitor thermal runaway in lithium-ion batteries are also discussed.