Browse > Article
http://dx.doi.org/10.5229/JECST.2015.6.1.1

Current Collectors for Flexible Lithium Ion Batteries: A Review of Materials  

Kim, Sang Woo (Division of Advanced Materials Engineering, Kongju National University)
Cho, Kuk Young (Division of Advanced Materials Engineering, Kongju National University)
Publication Information
Journal of Electrochemical Science and Technology / v.6, no.1, 2015 , pp. 1-6 More about this Journal
Abstract
With increasing interest in flexible electronic devices and wearable appliances, flexible lithium ion batteries are the most attractive candidates for flexible energy sources. During the last decade, many different kinds of flexible batteries have been reported. Although research of flexible lithium ion batteries is in its earlier stages, we have found that developing components that satisfy performance conditions under external deformation stress is a critical key to the success of flexible energy sources. Among the major components of the lithium ion battery, electrodes, which are connected to the current collectors, are gaining the most attention owing to their rigid and brittle character. In this mini review, we discuss candidate materials for current collectors and the previous strategies implemented for flexible electrode fabrication.
Keywords
flexible lithium secondary battery; carbon; conducting polymer; thin metal; electrode;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. Wang, S. Luo, Y. Wu, X. He, F. Zhao, J. Wang, K. Jiang, S. Fan, Adv. Funct. Mater., 23, 846 (2013).   DOI
2 H. Lin, W. Weng, J. Ren, L. Qiu, Z. Zhang, P. Chen, X. Chen, J. Deng, Y. Wang, H. Peng, Adv. Mater., 26, 1217 (2014).   DOI
3 L. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.-F. Cui, Y. Cui, Proc. Natl. Acad. Sci. U.S.A. 106, 21490 (2009).   DOI
4 L. Hu, H. Wu, F. La Mantia, Y. Yang, Y. Cui, ACS Nano, 4, 5843 (2010).   DOI
5 S.-L. Chou, Y. Zhao, J.-Z. Wang, Z.-X. Chen, H.-K. Liu, S.-X. Dou, J. Phys. Chem. C, 114, 15862 (2010).
6 K. Naoi, M. Morita, Electrochem. Soc. Interface, 17, 44 (2008).
7 J.-Z. Wang, S.-L. Chou, J. Chen, S.-Y. Chew, G.-X. Wang, K. Konstantinov, J. Wu, S.-X. Dou, H. K. Liu, Electrochem. Commun., 10, 1781 (2008).   DOI
8 L. Noerochim, J.-Z. Wang, D. Wexler, M. M. Rahman, J. Chen, H.-K. Liu, J. Mater. Chem., 22, 11159 (2012).   DOI
9 J. Chen, Y. Liu, A. I. Minett, C. Lynam, J. Wang, G. G. Wallace, Chem. Mater., 19, 3595 (2007).   DOI
10 L. Nyholm, G. Nyström, A. Mihranyan, M. Strømme, Adv. Mater., 23, 3751 (2011).
11 S. Song, S. W. Kim, D. J. Lee, Y.-G. Lee, K. M. Kim, C.-H. Kim, J.-K. Park, Y. M. Lee, K. Y. Cho, ACS Appl. Mater. Interfaces, 6, 11544 (2014).   DOI
12 M.-H. Park, M. Noh, S. Lee, M. Ko, S. Chae, S. Sim, S. Choi, H. Kim, H. Nam, S. Park, J. Cho, Nano Lett., 14, 4083 (2014).   DOI
13 J.-Y. Choi, D. J. Lee, Y. M. Lee, Y.-G. Lee, K. M. Kim, J.-K. Park, K. Y. Cho, Adv. Funct. Mater., 23, 2108 (2013).   DOI
14 S. W. Kim, J. H. Yun, B. Son, Y.-G. Lee, K. M. Kim, Y. M. Lee, K. Y. Cho, Adv. Mater., 26, 2977 (2014).   DOI
15 X. Jia, C. Yan, Z. Chen, R. Wang, Q. Zhang, L. Guo, F. Wei, Y. Lu, Chem. Commun., 47, 9669 (2011).   DOI
16 G. Zhou, D.-W. Wang, F. Li, P.-X. Hou, L. Yin, C. Liu, G. Q. Lu, I. R. Gentle, H.-M. Cheng, Energy Environ. Sci., 5, 8901 (2012).   DOI
17 H. Gwon, H.-S. Kim, K. U. Lee, D.-H. Seo, Y. C. Park, Y.-S. Lee, B. T. Ahn, K. Kang, Energy Environ. Sci., 4, 1277 (2011).   DOI
18 G. Ning, C. Xu, Y. Cao, X. Zhu, Z. Jiang, Z. Fan, W. Qian, F. Wei, J. Gao, J. Mater. Chem. A, 1, 408 (2013).   DOI
19 J.-Z. Wang, C. Zhong, S.-L. Chou, H.-K. Liu, Electrochem. Commun., 12, 1467 (2010).   DOI
20 J. Liang, Y. Zhao , L. Guo, L. Li, ACS Appl. Mater. Interfaces, 4, 5742 (2012).   DOI
21 J. Jin, Z. Wen, G. Ma, Y. Lu, Y. Cui, M. Wu, X. Liang, X. Wu, RSC Adv., 3, 2558 (2013).   DOI
22 X. Huang, B. Sun, K. Li, S. Chen, G. Wang, J. Mater. Chem. A, 1, 13484 (2013).   DOI
23 X. Li, J. Yang, Y. Hu, J. Wang, Y. Li, M. Cai, R. Li, X. Sun, J. Mater. Chem., 22, 18847 (2012).   DOI
24 N. Li, Z. Chen, W. Ren, F. Li, H.-M. Cheng, Proc. Natl. Acad. Sci. U.S.A., 109, 17360 (2012).   DOI
25 A. Goyal, A. L. M. Reddy, P. M. Ajayan, Small, 7, 1709 (2011).   DOI
26 C. Uthaisar, V. Barone, Nano Lett., 10, 2838 (2010).   DOI
27 X. Zhao, C. M. Hayner, M. C. Kung, H. H. Kung, ACS Nano, 5, 8739 (2011).   DOI
28 G. A. Snook, P. Kao, A. S. Best, J. Power Sources, 196, 1 (2011).   DOI
29 K. Xie, B. Wei, Adv. Mater., 26, 3592 (2014).   DOI
30 S.-Y. Lee, K.-H. Choi, W.-S. Choi, Y. H. Kwon, H.-R. Jung, H.-C. Shin, J. Y. Kim, Energy Environ. Sci., 6, 2414 (2013).   DOI
31 Y. Hu, X. Sun, J. Mater. Chem. A, 2, 10712 (2014).   DOI
32 X. Wang, X. Lu, B. Liu, D. Chen, Y. Tong, G. Shen, Adv. Mater., 26, 4763 (2014).   DOI
33 Q. Sa, Y. Wang, J. Power Sources, 208, 46 (2012).   DOI
34 Y.-L. Kim, Y.-K. Sun, S.-M. Lee, Electrochim. Acta, 53, 4500 (2008).   DOI
35 G.-W. Lee, J. H. Ryu, S. M. Oh, J. Korean Electrochem. Soc., 13, 157 (2010).   DOI
36 J. Zhu, J. Feng, Z. Guo, RSC Adv., 4, 57671 (2014).   DOI
37 C. Iwakura, Y. Fukumoto, H. Inoue, S. Ohashi, S. Kobayashi, H. Tada, M. Abe, J. Power Sources, 68, 301 (1997).   DOI
38 M. S. Yazici, D. Krassowski, J. Prakash, J. Power Sources, 141, 171 (2005).   DOI