DOI QR코드

DOI QR Code

Challenges and Design Strategies for Conversion-Based Anode Materials for Lithium- and Sodium-Ion Batteries

  • Kim, Hyunwoo (Department of Energy Science, Sungkyunkwan University) ;
  • Kim, Dong In (Department of Energy Science, Sungkyunkwan University) ;
  • Yoon, Won-Sub (Department of Energy Science, Sungkyunkwan University)
  • Received : 2021.09.15
  • Accepted : 2021.10.21
  • Published : 2022.02.28

Abstract

Although lithium-ion batteries are currently the most reliable power supply system for various mobile applications, further improvement in energy density is still required as the need for batteries in large energy-consuming devices is rapidly growing. However, in the anode, the most widely commercialized graphite-based anode materials almost face theoretical limitations. In addition, sodium-ion batteries have been actively studied to replace expensive charge carriers with cheaper ones. Accordingly, conversion-based materials have been extensively studied as high-capacity anode materials in both lithiumion batteries and sodium-ion batteries because their theoretical capacity is twice or thrice higher than that of insertion-based materials. This review will provide a comprehensive understanding of conversion-based materials, including basic charge storage behaviors, critical drawbacks that should be overcome, and practical material design for high-performance.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2019R1A2C2003731).

References

  1. J.M. Tarascon, M. Armand, Nature, 2001, 414, 359-367. https://doi.org/10.1038/35104644
  2. B. Scrosati, J. Hassoun, Y.K. Sun, Energy Environ. Sci., 2011, 4(9), 3287-3295. https://doi.org/10.1039/c1ee01388b
  3. M.S. Whittingham, Chem. Rev., 2004, 104(10), 4271-4301. https://doi.org/10.1021/cr020731c
  4. K. Chayambuka, G. Mulder, D.L. Danilov, P.H.L. Notten, Adv. Energy Mater., 2018, 8(16), 1800079. https://doi.org/10.1002/aenm.201800079
  5. M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Adv. Funct. Mater., 2013, 23(8), 947-958. https://doi.org/10.1002/adfm.201200691
  6. M.S. Whittingham, Science, 1976, 192(4244), 1126-1127. https://doi.org/10.1126/science.192.4244.1126
  7. K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, Mater. Res. Bull., 1980, 15(6), 783-789. https://doi.org/10.1016/0025-5408(80)90012-4
  8. A. Yoshino, K. Sanechika, T. Nakajima., Geothermics, 1987, 14(4), 595-599. https://doi.org/10.1016/0375-6505(85)90011-2
  9. A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc., 1997, 144(4), 1188-1194. https://doi.org/10.1149/1.1837571
  10. S. Chae, S. Choi, N. Kim, J. Sung, J. Cho, Angew. Chem. Int. Ed., 2020, 59(1), 110-135. https://doi.org/10.1002/anie.201902085
  11. J. Cabana, L. Monconduit, D. Larcher, M.R. Palacin, Adv. Mater., 2010, 22(35), E170-E192. https://doi.org/10.1002/adma.201000717
  12. S.H. Yu, S.H. Lee, D.J. Lee, Y.E. Sung, T. Hyeon, Small, 2016, 12(16), 2146-2172. https://doi.org/10.1002/smll.201502299
  13. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon, Nature, 2000, 407, 496-499. https://doi.org/10.1038/35035045
  14. M. v. Reddy, G. v. Subba Rao, B.V.R. Chowdari, Chem. Rev., 2013, 113(7), 5364-5457. https://doi.org/10.1021/cr3001884
  15. Y. Lu, L. Yu, X.W. (David) Lou, Chem, 2018, 4(5), 972-996. https://doi.org/10.1016/j.chempr.2018.01.003
  16. S.W. Kim, D.H. Seo, X. Ma, G. Ceder, K. Kang, Adv. Energy Mater., 2012, 2(7), 710-721. https://doi.org/10.1002/aenm.201200026
  17. X. Wei, X. Wang, X. Tan, Q. An, L. Mai, Adv. Funct. Mater., 2018, 28(46), 1804458. https://doi.org/10.1002/adfm.201804458
  18. Y. Jiang, M. Hu, D. Zhang, T. Yuan, W. Sun, B. Xu, M. Yan, Nano Energy, 2014, 5, 60-66. https://doi.org/10.1016/j.nanoen.2014.02.002
  19. J. Yang, S. Muhammad, M.R. Jo, H. Kim, K. Song, D.A. Agyeman, Y. il Kim, W.-S. Yoon, Y.M. Kang, Chem. Soc. Rev., 2016, 45(20), 5717-5770. https://doi.org/10.1039/c5cs00734h
  20. S.-M. Bak, Z. Shadike, R. Lin, X. Yu, X.-Q. Yang, NPG Asia Mater., 2018, 10, 563-580. https://doi.org/10.1038/s41427-018-0056-z
  21. J. Cui, H. Zheng, K. He, Adv. Mater., 2021, 33(6), 2000699. https://doi.org/10.1002/adma.202000699
  22. X. Ou, J. Li, F. Zheng, P. Wu, Q. Pan, X. Xiong, C. Yang, M. Liu, J. Power Sources, 2017, 343, 483-491. https://doi.org/10.1016/j.jpowsour.2017.01.097
  23. J. Yang, T. Zhou, R. Zhu, X. Chen, Z. Guo, J. Fan, H.K. Liu, W.X. Zhang, Adv. Mater. Interfaces, 2016, 3(3), 1500464. https://doi.org/10.1002/admi.201500464
  24. H. Kim, W. Choi, J. Yoon, E. Lee, W.-S. Yoon, Small, 2021, 17(14), 2006433. https://doi.org/10.1002/smll.202006433
  25. J. Li, D. Yan, T. Lu, Y. Yao, L. Pan, Chem. Eng. J., 2017, 325, 14-24. https://doi.org/10.1016/j.cej.2017.05.046
  26. M.K. Kim, S.H. Yu, A. Jin, J. Kim, I.H. Ko, K.S. Lee, J. Mun, Y.E. Sung, Chem. Commun., 2016, 52(79), 11775-11778. https://doi.org/10.1039/c6cc06712c
  27. J. Li, S. Hwang, F. Guo, S. Li, Z. Chen, R. Kou, K. Sun, C.J. Sun, H. Gan, A. Yu, E.A. Stach, H. Zhou, D. Su, Nat. Commun., 2019, 10, 2224. https://doi.org/10.1038/s41467-019-09931-2
  28. K.H. Nam, C.M. Park, J. Mater. Chem. A, 2016, 4(22), 8562-8565. https://doi.org/10.1039/C6TA01986B
  29. H. Kim, H. Kim, G.O. Park, Y. Kim, S. Muhammad, J. Yoo, M. Balasubramanian, Y.H. Cho, M.G. Kim, B. Lee, K. Kang, J.M. Kim, W.-S. Yoon, Chem. Mater., 2014, 26(22), 6361-6370. https://doi.org/10.1021/cm5025603
  30. M.A. Lowe, J. Gao, H.D. Abruna, J. Mater. Chem. A, 2013, 1(6), 2094-2103. https://doi.org/10.1039/C2TA01270G
  31. U. Boesenberg, M.A. Marcus, A.K. Shukla, T. Yi, E. McDermott, P.F. Teh, M. Srinivasan, A. Moewes, J. Cabana, Sci. Rep., 2014, 4, 7133. https://doi.org/10.1038/srep07133
  32. L. Li, R. Jacobs, P. Gao, L. Gan, F. Wang, D. Morgan, S. Jin, J. Am. Chem. Soc., 2016, 138(8), 2838-2848. https://doi.org/10.1021/jacs.6b00061
  33. J. Jang, J.H. Ku, S.M. Oh, T. Yoon, ACS Appl. Mater. Interfaces, 2021, 13(8), 9814-9819. https://doi.org/10.1021/acsami.0c19894
  34. J. Yoon, W. Choi, T. Kim, H. Kim, Y. Seok Choi, J. Man Kim, W.-S. Yoon, J. Energy Chem., 2021, 53, 276-284. https://doi.org/10.1016/j.jechem.2020.05.029
  35. Y. Li, H. Sun, X. Cheng, Y. Zhang, K. Zhao, Nano Energy, 2016, 27, 95-102. https://doi.org/10.1016/j.nanoen.2016.06.045
  36. S.Y. Lee, L. Wu, A.S. Poyraz, J. Huang, A.C. Marschilok, K.J. Takeuchi, E.S. Takeuchi, M. Kim, Y. Zhu, Adv. Mater., 2017, 29(43), 1703186. https://doi.org/10.1002/adma.201703186
  37. R. Cai, S. Guo, Y. Wu, S. Zhang, Y. Sun, S. Chen, P. Gao, C. Zhu, J. Chen, Z. Zhu, L. Sun, F. Xu, Energy Storage Mater., 2021, 37, 345-353. https://doi.org/10.1016/j.ensm.2021.02.023
  38. C. Zhu, F. Xu, H. Min, Y. Huang, W. Xia, Y. Wang, Q. Xu, P. Gao, L. Sun, Adv. Funct. Mater., 2017, 27(17), 1606163. https://doi.org/10.1002/adfm.201606163
  39. W. Tang, C.X. Peng, C.T. Nai, J. Su, Y.P. Liu, M.V.V. Reddy, M. Lin, K.P. Loh, Small, 2015, 11(20), 2446-2453. https://doi.org/10.1002/smll.201403018
  40. S.J. Rezvani, R. Gunnella, A. Witkowska, F. Mueller, M. Pasqualini, F. Nobili, S. Passerini, A. di Cicco, ACS Appl. Mater. Interfaces, 2017, 9(5), 4570-4576. https://doi.org/10.1021/acsami.6b12408
  41. R. Dedryvere, S. Laruelle, S. Grugeon, P. Poizot, D. Gonbeau, J.M. Tarascon, Chem. Mater., 2004, 16(6), 1056-1061. https://doi.org/10.1021/cm0311269
  42. L. Martin, H. Martinez, D. Poinot, B. Pecquenard, F. le Cras, J. Power Sources, 2014, 248, 861-873. https://doi.org/10.1016/j.jpowsour.2013.10.015
  43. Y.Y. Hu, Z. Liu, K.W. Nam, O.J. Borkiewicz, J. Cheng, X. Hua, M.T. Dunstan, X. Yu, K.M. Wiaderek, L.S. Du, K.W. Chapman, P.J. Chupas, X.Q. Yang, C.P. Grey, Nat. Mater., 2013, 12, 1130-1136. https://doi.org/10.1038/nmat3784
  44. X. Hua, P.K. Allan, C. Gong, P.A. Chater, E.M. Schmidt, H.S. Geddes, A.W. Robertson, P.G. Bruce, A.L. Goodwin, Nat. Commun., 2021, 12, 561. https://doi.org/10.1038/s41467-020-20736-6
  45. O.J. Borkiewicz, K.W. Chapman, P.J. Chupas, Phys. Chem. Chem. Phys., 2013, 15(22), 8466-8469. https://doi.org/10.1039/c3cp50590a
  46. H. Kim, W. Choi, J. Yoon, J.H. Um, W. Lee, J. Kim, J. Cabana, W.-S. Yoon, Chem. Rev., 2020, 120(14), 6934-6976. https://doi.org/10.1021/acs.chemrev.9b00618
  47. M. Keppeler, M. Srinivasan, ChemElectroChem, 2017, 4(11), 2727-2754. https://doi.org/10.1002/celc.201700747
  48. S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont, J.-M. Tarascon, J. Electrochem. Soc., 2002, 149(5), A627-A634. https://doi.org/10.1149/1.1467947
  49. J. Jamnik, J. Maier, Phys. Chem. Chem. Phys., 2003, 5(23), 5215-5220. https://doi.org/10.1039/b309130a
  50. P. Balaya, H. Li, L. Kienle, J. Maier, Adv. Funct. Mater., 2003, 13(8), 621-625. https://doi.org/10.1002/adfm.200304406
  51. H. Kim, W.I. Choi, Y. Jang, M. Balasubramanian, W. Lee, G.O. Park, S. B. Park, J. Yoo, J.S. Hong, Y.S. Choi, H.S. Lee, I.T. Bae, J.M. Kim, W.-S. Yoon, ACS Nano, 2018, 12(3), 2909-2921. https://doi.org/10.1021/acsnano.8b00435
  52. N.A. Kaskhedikar, J. Maier, Adv. Mater., 2009, 21(25-26), 2664-2680. https://doi.org/10.1002/adma.200901079
  53. J.K. Shon, H.S. Lee, G.O. Park, J. Yoon, E. Park, G.S. Park, S.S. Kong, M. Jin, J.M. Choi, H. Chang, S. Doo, J.M. Kim, W.-S. Yoon, C. Pak, H. Kim, G.D. Stucky, Nat. Commun., 2016, 7, 11049. https://doi.org/10.1038/ncomms11049
  54. Q. Li, J. Wu, Z. Yao, Y. Xu, M.M. Thackeray, C. Wolverton, V.P. Dravid, Nano Energy, 2018, 44, 15-22. https://doi.org/10.1016/j.nanoen.2017.11.052
  55. K. He, H.L. Xin, K. Zhao, X. Yu, D. Nordlund, T.C. Weng, J. Li, Y. Jiang, C.A. Cadigan, R.M. Richards, M.M. Doeff, X.Q. Yang, E.A. Stach, J. Li, F. Lin, D. Su, Nano Lett., 2015, 15(2), 1437-1444. https://doi.org/10.1021/nl5049884
  56. K.E. Gregorczyk, Y. Liu, J.P. Sullivan, G.W. Rubloff, ACS Nano, 2013, 7(7), 6354-6360. https://doi.org/10.1021/nn402451s
  57. L. Luo, J. Wu, J. Xu, V.P. Dravid, ACS Nano, 2014, 8(11), 11560-11566. https://doi.org/10.1021/nn504806h
  58. S. Grugeon, S. Laruelle, R. Herrera-Urbina, L. Dupont, P. Poizot, J.-M. Tarascon, J. Electrochem. Soc., 2001, 148(4), A285-A292. https://doi.org/10.1149/1.1353566
  59. Y. Zeng, L. Li, H. Li, X. Huang, L. Chen, Ionics, 2009, 15, 91-96. https://doi.org/10.1007/s11581-008-0242-z
  60. D.C. Bock, G.H. Waller, A.N. Mansour, A.C. Marschilok, K.J. Takeuchi, E.S. Takeuchi, J. Phys. Chem. C, 2018, 122(26), 14257-14271. https://doi.org/10.1021/acs.jpcc.8b01970
  61. K. Zhou, S. Wang, S. Zhang, F. Kang, B. Li, J. Mater. Chem. A, 2020, 8(28), 14031-14042. https://doi.org/10.1039/d0ta04054a
  62. F. Gong, Q. Zhou, J. Liu, D. Wang, S. Wu, D.D. Xia, Energy and Fuels, 2020, 34(6), 7616-7621. https://doi.org/10.1021/acs.energyfuels.0c00894
  63. T. Zhu, Y. Wang, Y. Li, R. Cai, J. Zhang, C. Yu, J. Wu, J. Cui, Y. Zhang, P.M. Ajayan, Y. Wu, ACS Appl. Nano Mater., 2020, 3(10), 10369-10379. https://doi.org/10.1021/acsanm.0c02290
  64. C. He, S. Wu, N. Zhao, C. Shi, E. Liu, J. Li, ACS Nano, 2013, 7(5), 4459-4469. https://doi.org/10.1021/nn401059h
  65. J. Zhu, W. Tu, H. Pan, H. Zhang, B. Liu, Y. Cheng, Z. Deng, H. Zhang, ACS Nano, 2020, 14(5), 5780-5787. https://doi.org/10.1021/acsnano.0c00712
  66. M. Jing, M. Zhou, G. Li, Z. Chen, W. Xu, X. Chen, Z. Hou, ACS Appl. Mater. Interfaces, 2017, 9(11), 9662-9668. https://doi.org/10.1021/acsami.6b16396
  67. W. Zhang, J. Sheng, J. Zhang, T. He, L. Hu, R. Wang, L. Mai, S. Mu, J. Mater. Chem. A, 2016, 4(43), 16936-16945. https://doi.org/10.1039/C6TA06933A
  68. Y. Kim, J. Yoon, G.O. Park, S. bin Park, H. Kim, J.M. Kim, W.-S. Yoon, J. Power Sources, 2018, 396, 749-753. https://doi.org/10.1016/j.jpowsour.2018.06.089
  69. H. Kim, H. Kim, S. Muhammad, J.H. Um, M.S.A. Sher Shah, P.J. Yoo, W.-S. Yoon, J. Power Sources, 2020, 446, 227321. https://doi.org/10.1016/j.jpowsour.2019.227321
  70. M. Xu, Q. Xia, J. Yue, X. Zhu, Q. Guo, J. Zhu, H. Xia, Adv. Funct. Mater., 2019, 29(6), 1807377. https://doi.org/10.1002/adfm.201807377
  71. B. Wang, E.H. Ang, Y. Yang, Y. Zhang, H. Geng, M. Ye, C.C. Li, Adv. Funct. Mater., 2020, 30(28), 2001708 https://doi.org/10.1002/adfm.202001708
  72. N. Zhang, X. Han, Y. Liu, X. Hu, Q. Zhao, J. Chen, Adv. Energy Mater., 2015, 5(5), 1401123. https://doi.org/10.1002/aenm.201401123
  73. S. Peng, L. Li, S.G. Mhaisalkar, M. Srinivasan, S. Ramakrishna, Q. Yan, ChemSusChem, 2014, 7(8), 2212-2220. https://doi.org/10.1002/cssc.201402161
  74. Y. Lian, F. Chen, H. Kang, C. Wu, M. Zhang, S. Xu, Appl. Surf. Sci., 2020, 507, 145061. https://doi.org/10.1016/j.apsusc.2019.145061
  75. G. Ke, H. Chen, J. He, X. Wu, Y. Gao, Y. Li, H. Mi, Q. Zhang, C. He, X. Ren, Chem. Eng. J., 2021, 403, 126251. https://doi.org/10.1016/j.cej.2020.126251
  76. J.S. Cho, J.S. Park, Y.C. Kang, Nano Res., 2017, 10(3), 897-907. https://doi.org/10.1007/s12274-016-1346-9
  77. Y. Liu, N. Zhang, H. Kang, M. Shang, L. Jiao, J. Chen, Chem. Eur. J., 2015, 21(33), 11878-11884. https://doi.org/10.1002/chem.201501759
  78. D. Chen, G. Chen, J. Pei, Y. Hu, Z. Qin, J. Wang, F. Wu, ChemElectroChem, 2017, 4(9), 2158-2163. https://doi.org/10.1002/celc.201700384
  79. H. Chen, G. Ke, X. Wu, W. Li, H. Mi, Y. Li, L. Sun, Q. Zhang, C. He, X. Ren, Nanoscale, 2021, 13(6), 3782-3789. https://doi.org/10.1039/D0NR07355E
  80. D. Ma, Q. Zhu, X. Li, H. Gao, X. Wang, X. Kang, Y. Tian, ACS Appl. Mater. Interfaces, 2019, 11(8), 8009-8017. https://doi.org/10.1021/acsami.8b21237
  81. F. Niu, J. Yang, N. Wang, D. Zhang, W. Fan, J. Yang, Y. Qian, Adv. Funct. Mater., 2017, 27(23), 1700522. https://doi.org/10.1002/adfm.201700522
  82. J.S. Cho, S.Y. Lee, J.K. Lee, Y.C. Kang, ACS Appl. Mater. Interfaces, 2016, 8(33), 21343-21349. https://doi.org/10.1021/acsami.6b05758
  83. G. Jiang, H. Han, W. Zhuang, X. Xu, S. Kaskel, F. Xu, H. Wang, J. Mater. Chem. A, 2019, 7(29), 17561-17569. https://doi.org/10.1039/c9ta03391b
  84. Y. Dong, Y. Li, H. Shi, J. Qin, S. Zheng, R. He, Z.S. Wu, Carbon, 2020, 159, 213-220. https://doi.org/10.1016/j.carbon.2019.12.041
  85. V. Sridhar, H. Park, J. Alloys Compd., 2019, 808, 151748 https://doi.org/10.1016/j.jallcom.2019.151748
  86. J. Yang, Y. Zhang, C. Sun, H. Liu, L. Li, W. Si, W. Huang, Q. Yan, X. Dong, Nano Res., 2016, 9(3), 612-621. https://doi.org/10.1007/s12274-015-0941-5
  87. G.A. Li, C.Y. Wang, W.C. Chang, H.Y. Tuan, ACS Nano, 2016, 10(9), 8632-8644. https://doi.org/10.1021/acsnano.6b03954
  88. X. Zhu, Y. Zhong, H. Zhai, Z. Yan, D. Li, Electrochim. Acta, 2014, 132, 364-369. https://doi.org/10.1016/j.electacta.2014.03.132
  89. C. Li, Z. Xue, J. Qin, M. Sawangphruk, P. Yu, X. Zhang, R. Liu, J. Alloys Compd., 2020, 842, 155812. https://doi.org/10.1016/j.jallcom.2020.155812
  90. L. Su, Z. Zhou, X. Qin, Q. Tang, D. Wu, P. Shen, Nano Energy, 2013, 2(2), 276-282. https://doi.org/10.1016/j.nanoen.2012.09.012
  91. X. Feng, Q. Shen, Y. Shi, J. Zhang, Electrochim. Acta, 2016, 220, 391-397. https://doi.org/10.1016/j.electacta.2016.10.112
  92. X. Gu, C. Yan, L. Yan, L. Cao, F. Niu, D. Liu, P. Dai, L. Li, J. Yang, X. Zhao, J. Mater. Chem. A, 2017, 5(47), 24645-24650. https://doi.org/10.1039/C7TA08532J
  93. S. Wu, M. Lu, X. Tian, C. Jiang, Chem. Eng. J., 2017, 313, 610-618. https://doi.org/10.1016/j.cej.2016.12.085
  94. J. Yao, T. Jin, Y. Li, S. Xiao, B. Huang, J. Jiang, J. Alloys Compd., 2021, 886, 161238. https://doi.org/10.1016/j.jallcom.2021.161238
  95. Y. Sharma, N. Sharma, G.V.S. Rao, B.V.R. Chowdari, J. Power Sources, 2007, 173(1), 495-501. https://doi.org/10.1016/j.jpowsour.2007.06.022
  96. K. Zhang, Y. Li, X. Hu, F. Liang, L. Wang, R. Xu, Y. Dai, Y. Yao, Chem. Eng. J., 2021, 404, 126464. https://doi.org/10.1016/j.cej.2020.126464
  97. C.H. Jo, H. Yashiro, S. Yuan, L. Shi, S.T. Myung, ACS Appl. Mater. Interfaces, 2018, 10(47), 40523-40530. https://doi.org/10.1021/acsami.8b13641
  98. J.H. Um, H. Kim, Y.-H. Cho, W.-S. Yoon, J. Electrochem. Sci. Technol., 2020, 11(1), 92-98. https://doi.org/10.33961/jecst.2019.00493
  99. S.W. Lee, C.W. Lee, S.B. Yoon, M.S. Kim, J.H. Jeong, K.W. Nam, K.C. Roh, K.B. Kim, J. Power Sources, 2016, 312, 207-215. https://doi.org/10.1016/j.jpowsour.2016.02.049
  100. Y. Kim, S. Muhammad, H. Kim, Y.-H. Cho, H. Kim, J.M. Kim, W.-S. Yoon, ChemSusChem, 2015, 8(14), 2378-2384. https://doi.org/10.1002/cssc.201403488
  101. F. Klein, B. Jache, A. Bhide, P. Adelhelm, Phys. Chem. Chem. Phys., 2013, 15(38), 15876-15887. https://doi.org/10.1039/c3cp52125g
  102. S. Fang, D. Bresser, S. Passerini, Adv. Energy Mater., 2020, 10(1), 1902485. https://doi.org/10.1002/aenm.201902485
  103. S. Hariharan, K. Saravanan, V. Ramar, P. Balaya, Phys. Chem. Chem. Phys., 2013, 15(8), 2945-2953. https://doi.org/10.1039/c2cp44572g
  104. W. Xia, F. Xu, C. Zhu, H.L. Xin, Q. Xu, P. Sun, L. Sun, Nano Energy, 2016, 27, 447-456. https://doi.org/10.1016/j.nanoen.2016.07.017
  105. Z. Liu, M. Qin, S. Guo, C. Li, Q. Su, X. Cao, G. Fang, S. Liang, Mater. Chem. Front., 2021, 5(4), 1694-1715. https://doi.org/10.1039/D0QM01012J
  106. X. Huang, Z. Zeng, H. Zhang, Chem. Soc. Rev., 2013, 42(5), 1934-1946. https://doi.org/10.1039/c2cs35387c
  107. X.Y. Yu, L. Yu, X.W. Lou, Adv. Energy Mater., 2016, 6(3), 1501333. https://doi.org/10.1002/aenm.201501333
  108. K. Edstrom, M. Herstedt, D.P. Abraham, J. Power Sources, 2006, 153(2), 380-384. https://doi.org/10.1016/j.jpowsour.2005.05.062
  109. S. Dai, L. Wang, M. Cao, Z. Zhong, Y. Shen, M. Wang, Mater. Today Energy, 2019, 12, 114-128. https://doi.org/10.1016/j.mtener.2018.12.011
  110. A. Debart, L. Dupont, R. Patrice, J.M. Tarascon, Solid State Sci., 2006, 8(6), 640-651. https://doi.org/10.1016/j.solidstatesciences.2006.01.013
  111. G.L. Xu, T. Sheng, L. Chong, T. Ma, C.J. Sun, X. Zuo, D.J. Liu, Y. Ren, X. Zhang, Y. Liu, S.M. Heald, S.G. Sun, Z. Chen, K. Amine, Nano Lett., 2017, 17(2), 953-962. https://doi.org/10.1021/acs.nanolett.6b04294
  112. Y. Zhou, D. Yan, H. Xu, J. Feng, X. Jiang, J. Yue, J. Yang, Y. Qian, Nano Energy, 2015, 12, 528-537. https://doi.org/10.1016/j.nanoen.2015.01.019
  113. S. Li, P. Liu, X. Huang, Y. Tang, H. Wang, J. Mater. Chem. A, 2019, 7(18), 10988-10997. https://doi.org/10.1039/c9ta01089k
  114. Z. Ali, M. Asif, X. Huang, T. Tang, Y. Hou, Adv. Mater., 2018, 30(36), 1802745. https://doi.org/10.1002/adma.201802745
  115. Y.N. Ko, S.H. Choi, Y.C. Kang, ACS Appl. Mater. Interfaces, 2016, 8(10), 6449-6456. https://doi.org/10.1021/acsami.5b11963
  116. X. Yang, J. Zhang, Z. Wang, H. Wang, C. Zhi, D.Y.W. Yu, A.L. Rogach, Small, 2018, 14(7), 1702669. https://doi.org/10.1002/smll.201702669
  117. C. Han, Z. Li, W.J. Li, S.L. Chou, S.X. Dou, J. Mater. Chem. A, 2014, 2(30), 11683-11690. https://doi.org/10.1039/C4TA01579G
  118. M.S. Balogun, Y. Huang, W. Qiu, H. Yang, H. Ji, Y. Tong, Mater. Today, 2017, 20(8), 425-451. https://doi.org/10.1016/j.mattod.2017.03.019
  119. M. Idrees, A. Mukhtar, Ata-ur-Rehman, S.M. Abbas, Q. Zhang, X. Li, Mater. Today Commun., 2021, 27, 102363. https://doi.org/10.1016/j.mtcomm.2021.102363
  120. X. Li, C. Deng, H. Wang, J. Si, S. Zhang, B. Huang, ACS Appl. Mater. Interfaces, 2021, 13(6), 7297-7307. https://doi.org/10.1021/acsami.0c21447
  121. J. Fullenwarth, A. Darwiche, A. Soares, B. Donnadieu, L. Monconduit, J. Mater. Chem. A, 2014, 2(7), 2050-2059. https://doi.org/10.1039/C3TA13976J
  122. K.H. Kim, S.H. Hong, Adv. Energy Mater., 2021, 11(9), 2003609. https://doi.org/10.1002/aenm.202003609
  123. S. Zhao, Z. Wang, Y. He, H. Jiang, Y.W. Harn, X. Liu, C. Su, H. Jin, Y. Li, S. Wang, Q. Shen, Z. Lin, Adv. Energy Mater., 2019, 9(26), 1901093.
  124. W.A. Ang, N. Gupta, R. Prasanth, S. Madhavi, ACS Appl. Mater. Interfaces, 2012, 4(12), 7011-7019. https://doi.org/10.1021/am3022653
  125. L. Su, J. Hei, X. Wu, L. Wang, Z. Zhou, Adv. Funct. Mater., 2017, 27(10), 1605544. https://doi.org/10.1002/adfm.201605544
  126. Y. Zhang, C. Wang, Y. Dong, R. Wei, J. Zhang, Chem. Eur. J., 2021, 27(3), 993-1001. https://doi.org/10.1002/chem.202003309
  127. L. Wang, W. Tang, Y. Jing, L. Su, Z. Zhou, ACS Appl. Mater. Interfaces, 2014, 6(15), 12346-12352. https://doi.org/10.1021/am5021233
  128. B. Philippe, M. Valvo, F. Lindgren, H. Rensmo, K. Edstrom, Chem. Mater., 2014, 26(17), 5028-5041. https://doi.org/10.1021/cm5021367
  129. Y.X. Lin, Z. Liu, K. Leung, L.Q. Chen, P. Lu, Y. Qi, J. Power Sources, 2016, 309, 221-230. https://doi.org/10.1016/j.jpowsour.2016.01.078
  130. B. Philippe, M. Hahlin, K. Edstrom, T. Gustafsson, H. Siegbahn, H. Rensmo, J. Electrochem. Soc., 2016, 163(2), A178-A191. https://doi.org/10.1149/2.0051602jes
  131. C. Xiao, R. Usiskin, J. Maier, Adv. Funct. Mater., 2021, 31(25), 2100938. https://doi.org/10.1002/adfm.202100938
  132. Y. Kim, J.H. Lee, S. Cho, Y. Kwon, I. In, J. Lee, N.H. You, E. Reichmanis, H. Ko, K.T. Lee, H.K. Kwon, D.H. Ko, H. Yang, B. Park, ACS Nano, 2014, 8(7), 6701-6712. https://doi.org/10.1021/nn500218m
  133. S. Permien, S. Indris, A.L. Hansen, M. Scheuermann, D. Zahn, U. Schurmann, G. Neubuser, L. Kienle, E. Yegudin, W. Bensch, ACS Appl. Mater. Interfaces, 2016, 8(24), 15320-15332. https://doi.org/10.1021/acsami.6b03185
  134. J.H. Um, K. Palanisamy, M. Jeong, H. Kim, W.-S. Yoon, ACS Nano, 2019, 13(5), 5674-5685. https://doi.org/10.1021/acsnano.9b00964
  135. E. Ventosa, W. Xia, S. Klink, F. la Mantia, M. Muhler, W. Schuhmann, Electrochim. Acta, 2012, 65, 22-29. https://doi.org/10.1016/j.electacta.2011.12.128
  136. W. Xing, J. Electrochem. Soc., 1997, 144(4), 1195-1201. https://doi.org/10.1149/1.1837572
  137. G. Ramos-Sanchez, G. Chen, A.R. Harutyunyan, P.B. Balbuena, RSC Adv., 2016, 6(33), 27260-27266. https://doi.org/10.1039/C5RA27225D
  138. K. Omichi, G. Ramos-Sanchez, R. Rao, N. Pierce, G. Chen, P.B. Balbuena, A.R. Harutyunyan, J. Electrochem. Soc., 2015, 162(10), A2106-A2115. https://doi.org/10.1149/2.0591510jes
  139. A. Kraytsberg, Y. Ein-Eli, J Solid State Electrochem., 2017, 21, 1907-1923. https://doi.org/10.1007/s10008-017-3580-9
  140. C. Wu, S.X. Dou, Y. Yu, Small, 2018, 14(22), 1703671. https://doi.org/10.1002/smll.201703671
  141. Y.T. Lee, C.T. Kuo, T.R. Yew, ACS Appl. Mater. Interfaces, 2021, 13(1), 570-579. https://doi.org/10.1021/acsami.0c18368
  142. P. Liu, J.J. Vajo, J.S. Wang, W. Li, J. Liu, J. Phys. Chem. C, 2012, 116(10), 6467-6473. https://doi.org/10.1021/jp211927g
  143. H. Kim, H. Kim, H. Kim, J. Kim, G. Yoon, K. Lim, W.-S. Yoon, K. Kang, Adv. Funct. Mater., 2016, 26(28), 5042-5050. https://doi.org/10.1002/adfm.201601357
  144. S. Li, Z. Shadike, G. Kwon, X.Q. Yang, J.H. Lee, S. Hwang, Chem. Mater., 2021, 33(10), 3515-3523. https://doi.org/10.1021/acs.chemmater.0c04466
  145. D. Chang, M.H. Chen, A. van der Ven, Chem. Mater., 2015, 27(22), 7593-7600. https://doi.org/10.1021/acs.chemmater.5b02356
  146. T. Takeuchi, H. Sakaebe, H. Kageyama, T. Sakai, K. Tatsumi, J. Electrochem. Soc., 2008, 155(9), A679-A684. https://doi.org/10.1149/1.2953496
  147. J. Zhang, P. Gu, J. Xu, H. Xue, H. Pang, Nanoscale, 2016, 8(44), 18578-18595. https://doi.org/10.1039/c6nr07207k
  148. B. Cao, Z. Liu, C. Xu, J. Huang, H. Fang, Y. Chen, J. Power Sources, 2019, 414, 233-241. https://doi.org/10.1016/j.jpowsour.2019.01.001
  149. Z. Zhang, W. Li, T.-W. Ng, W. Kang, C.-S. Lee, W. Zhang, J. Mater. Chem. A, 2015, 3(41), 20527-20534. https://doi.org/10.1039/C5TA05723J
  150. H. Sun, G. Xin, T. Hu, M. Yu, D. Shao, X. Sun, J. Lian, Nat. Commun., 2014, 5, 4526. https://doi.org/10.1038/ncomms5526
  151. J. Yoon, W. Choi, H. Kim, Y.S. Choi, J.M. Kim, W.-S. Yoon, J. Power Sources, 2021, 493, 229682. https://doi.org/10.1016/j.jpowsour.2021.229682
  152. Z. Li, Y. Fang, J. Zhang, X.W. (David) Lou, Adv. Mater., 2018, 30(30), 1800525. https://doi.org/10.1002/adma.201800525
  153. H. Kim, N. Venugopal, J. Yoon, W.-S. Yoon, J. Alloys Compd., 2019, 778, 37-46. https://doi.org/10.1016/j.jallcom.2018.11.107
  154. R. Zhao, Q. Li, C. Wang, L. Yin, Electrochim. Acta, 2016, 197, 58-67. https://doi.org/10.1016/j.electacta.2016.03.047
  155. S. Zhang, B.V.R. Chowdari, Z. Wen, J. Jin, J. Yang, ACS Nano, 2015, 9(12), 12464-12472. https://doi.org/10.1021/acsnano.5b05891
  156. L. Yu, J.F. Yang, X.W.D. Lou, Angew. Chem. Int. Ed., 2016, 55(43), 13422-13426. https://doi.org/10.1002/anie.201606776
  157. K. Xu, X. Shen, C. Song, H. Chen, Y. Chen, Z. Ji, A. Yuan, X. Yang, L. Kong, Small, 2021, 17(34), 2101080. https://doi.org/10.1002/smll.202101080
  158. W. Chen, X. Zhang, L. Mi, C. Liu, J. Zhang, S. Cui, X. Feng, Y. Cao, C. Shen, Adv. Mater., 2019, 31(8), 1806664. https://doi.org/10.1002/adma.201806664
  159. Y. Meng, Y. Cheng, X. Ke, G. Ren, F. Zhu, J. Electrochem. Sci. Technol., 2021, 12(2), 285-295. https://doi.org/10.33961/jecst.2020.01648
  160. S. Tian, B. Li, B. Zhang, Y. Wang, X. Yang, H. Ye, Z. Xia, G. Zheng, J. Electrochem. Sci. Technol., 2020, 11(4), 384-391. https://doi.org/10.33961/jecst.2020.01095
  161. R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, Nat. Mater., 2015, 14, 271-279. https://doi.org/10.1038/nmat4170
  162. W. Zhao, W. Choi, W.-S. Yoon, J. Electrochem. Sci. Technol., 2020, 11(3), 195-219. https://doi.org/10.33961/jecst.2020.00745
  163. G. Zhou, D.W. Wang, L.C. Yin, N. Li, F. Li, H.M. Cheng, ACS Nano, 2012, 6(4), 3214-3223. https://doi.org/10.1021/nn300098m
  164. X.Y. Shan, G. Zhou, L.C. Yin, W.J. Yu, F. Li, H.M. Cheng, J. Mater. Chem. A, 2014, 2(42), 17808-17814. https://doi.org/10.1039/C4TA04460F
  165. R.W. Johnson, A. Hultqvist, S.F. Bent, Mater. Today, 2014, 17(5), 236-246. https://doi.org/10.1016/j.mattod.2014.04.026
  166. Q.H. Wu, B. Qu, J. Tang, C. Wang, D. Wang, Y. Li, J.G. Ren, Electrochim. Acta, 2015, 156, 147-153. https://doi.org/10.1016/j.electacta.2014.12.149
  167. E. Kang, Y.S. Jung, A.S. Cavanagh, G.H. Kim, S.M. George, A.C. Dillon, J.K. Kim, J. Lee, Adv. Funct. Mater., 2011, 21(13), 2430-2438. https://doi.org/10.1002/adfm.201002576
  168. H. Zhang, Z. Chen, R. Hu, J. Liu, J. Cui, W. Zhou, C. Yang, J. Mater. Chem. A, 2018, 6(10), 4374-4385. https://doi.org/10.1039/C8TA00290H
  169. W. Ren, W. Zhou, H. Zhang, C. Cheng, ACS Appl. Mater. Interfaces, 2017, 9(1), 487-495. https://doi.org/10.1021/acsami.6b13179
  170. N. Yesibolati, M. Shahid, W. Chen, M.N. Hedhili, M.C. Reuter, F.M. Ross, H.N. Alshareef, Small, 2014, 10(14), 2849-2858. https://doi.org/10.1002/smll.201303898
  171. B. Ahmed, D.H. Anjum, M.N. Hedhili, H.N. Alshareef, Small, 2015, 11(34), 4341-4350. https://doi.org/10.1002/smll.201500919
  172. B. Ahmed, M. Shahid, D.H. Nagaraju, D.H. Anjum, M.N. Hedhili, H.N. Alshareef, ACS Appl. Mater. Interfaces, 2015, 7(24), 13154-13163. https://doi.org/10.1021/acsami.5b03395
  173. X. Li, J. Liu, L. Ouyang, B. Yuan, L. Yang, M. Zhu, Appl. Surf. Sci., 2018, 436, 912-918. https://doi.org/10.1016/j.apsusc.2017.12.069
  174. B. Wang, G. Wang, Z. Zheng, H. Wang, J. Bai, J. Bai, Electrochim. Acta, 2013, 106, 235-243. https://doi.org/10.1016/j.electacta.2013.05.085
  175. Z. Hu, H. Cui, J. Li, G. Lei, Z. Li, Ceram. Int., 2020, 46(11), 18868-18877. https://doi.org/10.1016/j.ceramint.2020.04.207
  176. H. Zhao, X. Yu, J. Li, B. Li, H. Shao, L. Li, Y. Deng, J. Mater. Chem. A, 2019, 7(15), 8700-8722. https://doi.org/10.1039/c9ta00126c
  177. L. Wang, J. Swiatowska, S. Dai, M. Cao, Z. Zhong, Y. Shen, M. Wang, Mater. Today Energy, 2019, 11, 46-60. https://doi.org/10.1016/j.mtener.2018.10.017
  178. V. Etacheri, O. Haik, Y. Goffer, G.A. Roberts, I.C. Stefan, R. Fasching, D. Aurbach, Langmuir, 2012, 28(1), 965-976. https://doi.org/10.1021/la203712s
  179. Y.B. Yohannes, S.D. Lin, N.-L. Wu, J. Electrochem. Soc., 2017, 164(14), A3641-A3648. https://doi.org/10.1149/2.0681714jes
  180. Z. Zhu, Y. Tang, Z. Lv, J. Wei, Y. Zhang, R. Wang, W. Zhang, H. Xia, M. Ge, X. Chen, Angew. Chem., 2018, 130(14), 3718-3722. https://doi.org/10.1002/ange.201712907
  181. X. Han, J. Sun, Chem. Commun., 2020, 56(45), 6047-6049. https://doi.org/10.1039/d0cc01853h
  182. V. Winkler, G. Kilibarda, S. Schlabach, D. v. Szabo, T. Hanemann, M. Bruns, J. Phys. Chem. C, 2016, 120(43), 24706-24714. https://doi.org/10.1021/acs.jpcc.6b06662
  183. K.H. Seng, L. Li, D.P. Chen, Z.X. Chen, X.L. Wang, H.K. Liu, Z.P. Guo, Energy, 2013, 58, 707-713. https://doi.org/10.1016/j.energy.2013.06.011
  184. Y. Wang, X. Guo, Z. Wang, M. Lu, B. Wu, Y. Wang, C. Yan, A. Yuan, H. Yang, J. Mater. Chem. A, 2017, 5(48), 25562-25573. https://doi.org/10.1039/C7TA08314A
  185. Z. Zhang, X. Zhao, J. Li, ChemNanoMat, 2016, 2(3), 196-200. https://doi.org/10.1002/cnma.201500194
  186. N. Kumar, A. Sen, K. Rajendran, R. Rameshbabu, J. Ragupathi, H.A. Therese, T. Maiyalagan, RSC Adv., 2017, 7(40), 25041-25053. https://doi.org/10.1039/C7RA02013A
  187. L. Zhang, Z. Wei, S. Yao, Y. Gao, X. Jin, G. Chen, Z. Shen, F. Du, Adv. Mater., 2021, 33(20), 2100210. https://doi.org/10.1002/adma.202100210
  188. K. Chen, Y. Dong Noh, K. Li, S. Komarneni, D. Xue, J. Phys. Chem. C, 2013, 117(20), 10770-10779. https://doi.org/10.1021/jp4018025
  189. S. Hariharan, K. Saravanan, P. Balaya, Electrochem. Solid-State Lett., 2010, 13(9), A132-A134. https://doi.org/10.1149/1.3458648
  190. Y. Ma, C. Fang, B. Ding, G. Ji, J.Y. Lee, Adv. Mater., 2013, 25(33), 4646-4652. https://doi.org/10.1002/adma.201301906
  191. A. Palmieri, S. Yazdani, R. Kashfi-Sadabad, S.G. Karakalos, M.T. Pettes, W.E. Mustain, J. Phys. Chem. C, 2018, 122(13), 7120-7127. https://doi.org/10.1021/acs.jpcc.8b00403
  192. W. Wang, J. Qin, Z. Yin, M. Cao, ACS Nano, 2016, 10(11), 10106-10116. https://doi.org/10.1021/acsnano.6b05150
  193. P. Li, Y. Yang, S. Gong, F. Lv, W. Wang, Y. Li, M. Luo, Y. Xing, Q. Wang, S. Guo, Nano Res., 2019, 12(9), 2218-2223. https://doi.org/10.1007/s12274-018-2250-2
  194. T.V. Thi, A.K. Rai, J. Gim, J. Kim, J. Power Sources, 2015, 292, 23-30. https://doi.org/10.1016/j.jpowsour.2015.05.029
  195. D.D. Vaughn, O.D. Hentz, S. Chen, D. Wang, R.E. Schaak, Chem. Commun., 2012, 48(45), 5608-5610. https://doi.org/10.1039/c2cc32033a
  196. I.A. Courtney, J. Electrochem. Soc., 1997, 144(6), 2045-2052. https://doi.org/10.1149/1.1837740
  197. Y.M. Lin, K.C. Klavetter, A. Heller, C.B. Mullins, J. Phys. Chem. Letters, 2013, 4(6), 999-1004. https://doi.org/10.1021/jz4003058
  198. J. Wu, N. Luo, S. Huang, W. Yang, M. Wei, J. Mater. Chem. A, 2019, 7(9), 4574-4580. https://doi.org/10.1039/c8ta12434e
  199. Y. Wang, Z.X. Huang, Y. Shi, J.I. Wong, M. Ding, H.Y. Yang, Sci. Rep., 2015, 5, 9164. https://doi.org/10.1038/srep09164
  200. C.H. Kim, Y.S. Jung, K.T. Lee, J.H. Ku, S.M. Oh, Electrochim. Acta, 2009, 54(18), 4371-4377. https://doi.org/10.1016/j.electacta.2009.03.009
  201. L. Wang, Q. Zhao, Z. Wang, Y. Wu, X. Ma, Y. Zhu, C. Cao, Nanoscale, 2020, 12(1), 248-255. https://doi.org/10.1039/c9nr07849e
  202. J. Wang, L. Wang, S. Zhang, S. Liang, X. Liang, H. Huang, W. Zhou, J. Guo, J. Alloys Compd., 2018, 748, 1013-1021. https://doi.org/10.1016/j.jallcom.2018.03.155
  203. K.H. Seng, M.H. Park, Z.P. Guo, H.K. Liu, J. Cho, Nano Lett., 2013, 13(3), 1230-1236. https://doi.org/10.1021/nl304716e
  204. Q. Li, H. Li, Q. Xia, Z. Hu, Y. Zhu, S. Yan, C. Ge, Q. Zhang, X. Wang, X. Shang, S. Fan, Y. Long, L. Gu, G.X. Miao, G. Yu, J.S. Moodera, Nat. Mater., 2021, 20, 76-83. https://doi.org/10.1038/s41563-020-0756-y
  205. H. Li, Z. Hu, Q. Xia, H. Zhang, Z. Li, H. Wang, X. Li, F. Zuo, F. Zhang, X. Wang, W. Ye, Q. Li, Y. Long, Q. Li, S. Yan, X. Liu, X. Zhang, G. Yu, G.X. Miao, Adv. Mater., 2021, 33(12), 2006629. https://doi.org/10.1002/adma.202006629
  206. M.Y. Cheng, Y.S. Ye, T.M. Chiu, C.J. Pan, B.J. Hwang, J. Power Sources, 2014, 253, 27-34. https://doi.org/10.1016/j.jpowsour.2013.12.037
  207. B. Chen, E. Liu, F. He, C. Shi, C. He, J. Li, N. Zhao, Nano Energy, 2016, 26, 541-549. https://doi.org/10.1016/j.nanoen.2016.06.003
  208. T. Wang, N. Zhao, C. Shi, L. Ma, F. He, C. He, J. Li, E. Liu, J. Phys. Chem. C, 2017, 121(36), 19559-19567. https://doi.org/10.1021/acs.jpcc.7b04642
  209. Y. Lv, B. Chen, N. Zhao, C. Shi, C. He, J. Li, E. Liu, Surf. Sci., 2016, 651, 10-15. https://doi.org/10.1016/j.susc.2016.03.018
  210. J. Li, W. Xu, C. Guo, M. Li, L. Zhang, Electrochim. Acta, 2018, 276, 333-342. https://doi.org/10.1016/j.electacta.2018.04.183
  211. S. Zhao, Y. Wang, R. Liu, Y. Yu, S. Wei, F. Yu, Q. Shen, J. Mater. Chem. A, 2015, 3(33), 17181-17189. https://doi.org/10.1039/C5TA03785A
  212. R. Zhang, X. Huang, D. Wang, T.K.A. Hoang, Y. Yang, X. Duan, P. Chen, L.C. Qin, G. Wen, Adv. Funct. Mater., 2018, 28(10), 1705817. https://doi.org/10.1002/adfm.201705817