Browse > Article
http://dx.doi.org/10.14478/ace.2018.1092

Recent Advances in Cathode and Anode Materials for Lithium Ion Batteries  

Nguyen, Van Hiep (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Kim, Young Ho (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.29, no.6, 2018 , pp. 635-644 More about this Journal
Abstract
Lithium ion batteries have been broadly used in various applications to our daily life such as portable electronics, electric vehicles and grid-scale energy storage devices. Significant efforts have recently been made on developing electrode materials for lithium ion batteries that meet commercial needs of the high energy density, light weight and low cost. In this review, we summarize the principles and recent research advances in cathode and anode materials for lithium ion batteries, and particularly emphasize electrode material designs and advanced characterization techniques.
Keywords
Lithium ion battery; cathode material; anode material;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. C. Zheng, B. Zhang, and Z. H. Yang, Novel synthesis of $LiVPO_4F$ cathode material by chemical lithiation and postannealing, J. Power Sources, 202, 380-383 (2012).   DOI
2 R. Domink, M. Bele, A. Kokalj, M. Gaberscek, and J. Jamnik, $Li_2MnSiO_4$ as a potential Li-battery cathode material, J. Power Sources, 174, 457-461 (2007).   DOI
3 Z. L. Gong, Y. X. Li, and Y. Yang, Synthesis and electrochemical performance of $Li_2CoSiO_4$ as cathode material for lithium ion batteries, J. Power Sources, 174, 524-527 (2007).   DOI
4 A. Sobkowiak, M. R. Roberts, R. Younesi, T. Ericsson, L. Haggstrom, C. W. Tai, A. M. Andersson, K. Edstrom, T. Gustafsson, and F. Bjorefors, Understanding and Controlling the Surface Chemistry of $LiFeSO_4F$ for an Enhanced Cathode Functionality, Chem. Mater., 25, 3020-3029 (2013).   DOI
5 J. Li, L. Xing, Z. Wang, W. Tu, X. Yang, X. Yang, Y. Lin, Y. Liao, M. Xu, and W. Li, Insight into the capacity fading of layered lithium-rich oxides and its suppression via a film-forming electrolyte additive, RSC Adv., 8, 25794-25801 (2018).   DOI
6 Q. Wang, Z. Wen, J. Jin, J. Guo, X. Huang, J. Yang, and C. Chen, A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries, Chem. Commun., 52, 1637-1640 (2016).   DOI
7 X. Zhang, W. Wang, A. Wang, Y. Huang, K. Yuan, Z. Yu, J. Qiu, and Y. Yang, Improved cycle stability and high security of Li-B alloy anode for lithium-sulfur battery, J. Mater. Chem. A, 2, 11660-11665 (2014).   DOI
8 M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak, Insertion electrode materials for rechargeable lithium batteries, Adv. Mater., 10, 725-763 (1998).   DOI
9 K. Persson, V. A. Sethuraman, L. J. Hardwick, Y. Hinuma, Y. S. Meng, A. van der Ven, V. Srinivasan, R. Kostecki, and G. Ceder, Lithium diffusion in graphitic carbon, J. Phys. Chem. Lett., 1, 1176-1180 (2010).   DOI
10 L. Yu, D. Cai, H. Wang, and M. M. Titirici, Hydrothermal synthesis of $SnO_2$ and $SnO_2@C$ nanorods and their application as anode materials in lithium-ion batteries, RSC Adv., 3, 17821-17826 (2013).
11 M. Z. Kong, W. L. Wang, J. Y. Park, and H. B. Gu, Synthesis and electrochemical properties of a carbon-coated spinel $Li_4Ti_5O_{12}$ anode material using soybean oil for lithium-ion batteries, Mater. Lett., 146, 12-15 (2015).   DOI
12 M. Broussely, P. Biensan, and B. Simon, Lithium insertion into host materials: the key to success for Li ion batteries, Electrochim. Acta, 45, 3-22 (1999).   DOI
13 N. Nitta, F. Wu, and J. T. Lee, Li-ion battery materials: present and future, Mater. today, 18, 252-264 (2015).   DOI
14 P. Roy, D. Kim, K. Lee, E. Spiecker, and P. Schmuki, $TiO_2$ nanotubes and their application in dye-sensitized solar cells, Nanoscale, 2, 45-59 (2010).   DOI
15 Y. Zhang, Q. Fu, Q. Xu, X. Yan, R. Zhang, Z. Duo, Y. Wei, D. Zhang, and G. Chen, Improved electrochemical performance of nitrogen doped $TiO_2$-B nanowires as anode materials for Li-ion batteries, Nanoscale, 7, 12215-12224 (2015).   DOI
16 J. Wang, X. M. Liu, H. Yang, and X. D. Shen, Characterization and electrochemical properties of carbon-coated $Li_4Ti_5O_{12}$ prepared by a citric acid sol-gel method, J. Alloys Compd., 509, 712-718 (2011).   DOI
17 Y. Zhu, Q. Wang, X. Zhao, and B. Yuan, Cross-linked porous ${\alpha}$- $Fe_2O_3$ nanorods as high performance anode materials for lithium ion batteries, RSC Adv., 6, 97385-97390 (2016).   DOI
18 Y. Qin, Q. Li, J. Xu, X. Wang, G. Zhao, C. Liu, X. Yan. Y. Long, S. Yan, and S. Li, CoO-Co nanocomposite anode with enhanced electrochemical performance for lithium-ion batteries, Electrochim. Acta, 224, 90-95 (2017).   DOI
19 T. Perez, R. L. Lopez, J. L. Nava, I. Lazaro, G. Velasco. R. Cruz, and I. Rodriguez, Electrochemical oxidation of cyanide on 3D Ti-$RuO_2$ anode using a filter-press electrolyzer, Chemosphere, 177, 1-6 (2017).   DOI
20 M. S. Whittingham and F. R. Gamble Jr, The lithium intercalates of the transition metal dichalcogenides, Mater. Res. Bull., 10, 363-371 (1975).   DOI
21 M. S. Whittingham, Electrical Energy Storage and Intercalation Chemistry, Science, 192, 1126-1127 (1976).   DOI
22 A. VanderVen, M. K. Aydinol, and G. Ceder, First-principles evidence for stage ordering in $Li_xCoO_2$, J. Electrochem. Soc., 145, 2149-2155 (1998).   DOI
23 B. M. L. Rao, D. J. Eustace, and J. A. Shropshire, The Li/$TiS_2$ cell with LiSCN electrolyte, J. Appl. Electrochem., 10, 757-763 (1980).   DOI
24 T. Ohzuku and A. Ueda, Solid-state redox reactions of $LiCoO_2$ ($R_{3}^{-}m$) for 4 volt secondary lithium cells, J. Electrochem. Soc., 141, 2972-2977 (1994).   DOI
25 J. N. Reimers and J. R. Dahn, Electrochemical and in situ x-ray diffraction studies of lithium intercalation in $Li_xCoO_2$, J. Electrochem. Soc., 139, 2091-2097 (1992).   DOI
26 X. Dai, A. Zhou, J. Xu, B. Yang, L. Wang, and J. Li, Superior electrochemical performance of $LiCoO_2$ electrodes enabled by conductive $Al_2O_3$-doped ZnO coating via magnetron sputtering, J. Power Sources, 298, 114-122 (2015).   DOI
27 S. Myung, N. Kumagai, S. Komaba, and H. Chung, Effects of Al doping on the microstructure of $LiCoO_2$ cathode materials, Solid State Ionics, 139, 47-56 (2001).   DOI
28 S. Madhavi and Rao GS, Effect of Cr dopant on the cathodic behavior of $LiCoO_2$, Electrochimic. Acta, 48, 219-226 (2002).   DOI
29 S. Huang, Z. Wen, X. Yang, Z. Gu, and X. Xu, Improvement of the high-rate discharge properties of $LiCoO_2$ with the Ag additives, J. Power Sources, 148, 72-77 (2005).   DOI
30 J. Liu and D. Xue, Hollow Nanostructured Anode Materials for Li-Ion Batteries, Nanoscale Res. Lett., 5, 1525-1534 (2010).   DOI
31 B. J. Landi, M. J. Ganter, C. D. Cress, R. A. Dileo, and R. P. Yaffaelle, Carbon nanotubes for lithium ion batteries, Energy Environ. Sci., 2, 638-654 (2009).   DOI
32 C. C. Li and Y. W. Wang, Importance of binder compositions to the dispersion and electrochemical properties of water-based $LiCoO_2$ cathodes, J. Power Sources, 227, 204-210 (2013).   DOI
33 Y. Liu, V.I. Artyukhov, M. Liu, A. R. Harutyunyan, and B.I. Yakobson, Feasibility of lithium storage on graphene and its derivatives, J. Phys. Chem. Lett., 4, 1737-1742 (2013).   DOI
34 S. Boyanov, K. Annou, C. Villevieille, M. Pelosi, D. Zitoun, and L. Monconduit, Nanostructured transition metal phosphide as negative electrode for lithium-ion batteries, Ionics, 14, 183-190 (2008).   DOI
35 W. Wang, Z. Favors, C. Li, C. Liu, R. Ye, C. Fu, K. Bozhilov, J. Guo, M. Ozkan, and C. S. Ozkan, Silicon and carbon nanocomposite spheres with enhanced electrochemical performance for full cell lithium ion batteries, Sci Rep., 7, 44838 (2017).   DOI
36 C. de las Casas and W. Li, A review of application of carbon nanotubes for lithium ion battery anode material, J. Power Sources, 208, 74-85 (2012).   DOI
37 J. Yang, M. Winter, and J. O. Besenhard, Small particle size multiphase Li-alloy anodes for lithium-ion batteries, Solid State Ionics 90, 281-287 (1996).   DOI
38 R. A. Huggins and B. A. Boukamp, US Patent 4,436,796 (1984).
39 C. M. Park, J. H. Kim, H. Kim, and H. J. Sohn, Li-alloy based anode materials for Li secondary batteries, Chem. Soc. Rev., 39, 3115-3141 (2010).   DOI
40 J. R. Dahn, U. V. Sacken, and C. A. Michal, Structure and electrochemistry of $Li_{1{\pm}y}NiO_2$ and a new $Li_2NiO_2$ phase with the Ni $(OH)_2$ structure, Solid State Ionics, 44, 87-97 (1990).   DOI
41 M. Broussely, F. Perton, P. Biensan, J. M. Bodet, J. Labat, A. Lecerf, C. Delmas, A. Rougier, and J. P. Peres, $Li_xNiO_2$, a promising cathode for rechargeable lithium batteries, J. Power Sources, 54, 109-114 (1995).   DOI
42 S. P. Lin, K. Z. Fung, Y. M. Hon, and M. H. Hon, Effect of Al Addition on Formation of Layer-Structured $LiNiO_2$, J. Solid State Chem., 167, 97-106 (2002).   DOI
43 Y. Nishida, K. Nakane, and T. Satoh, Synthesis and properties of gallium-doped $LiNiO_2$ as the cathode material for lithium secondary batteries, J. Power Sources, 68, 561-564 (1997).   DOI
44 A. R. Armstrong and P. G. Bruce, Synthesis of layered $LiMnO_2$ as an electrode for rechargeable lithium batteries, Nature, 381, 499-500 (1996).   DOI
45 A. R. Armstrong, A. D. Robertson, and P. G. Bruce, Structural transformation on cycling layered $Li(Mn_{1-y}Co_y)O_2$ cathode materials, Electrochimi. Acta, 45, 285-294 (1999).   DOI
46 S. R. Gowda, K. G. Gallagher, J. R. Croy, M. Bettge, M. M. Thackeray, and M. Balasubramanian, Oxidation state of cross-over manganese species on the graphite electrode of lithium-ion cells, Phys. Chem. Chem. Phys., 16, 6898-6902 (2014).   DOI
47 X. Han, M. Ouyang, L. Lu, J. Li, Y. Zheng, and Z. Li, A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification, J. Power Sources, 251, 38-54 (2014).   DOI
48 M. M. Thackeray, W. I. F. David, P. G. Bruce, and J. B. Goodenough, Lithium insertion into manganese spinels, Mat. Res. Bull., 18, 461-472 (1983).   DOI
49 F. Schipper, E. M. Erickson, C. Erk, J. Y. Shin, F. F. Chesneau, and D. Aurbach, Review-recent advances and remaining challenges for lithium ion battery cathodes, J. Electrochem. Soc., 164 A6220-A6228 (2017).   DOI
50 D. Y. Wan, Z. Y. Fan, Y. X. Dong, E.baasanjav, H. B. Jun, B. Jin, E. M. Jin, and S. M. Jeong, Effect of Metal (Mn, Ti) Doping on NCA Cathode Materials for Lithium Ion Batteries, J. Nanomater., 2018, 8082502 (2018).
51 G. Amatucci and J. M. Tarascon, Optimization of Insertion Compounds Such as $LiMn_2O_4$ for Li-Ion Batteries, J. Electrochem. Soc., 149, K31-K46 (2002).   DOI
52 A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, and J. Goodenough, Effect of Structure on the $Fe^{3+}/Fe^{2+}$ Redox Couple in Iron Phosphates, J. Electrochem. Soc., 144, 1609-1613 (1997).   DOI
53 P. Axmann, C. Stinner, M. Wohlfahrt-Mehrens, A. Mauger, and F. Gendron, C. M. Julien, Nonstoichiometric $LiFePO_4$: Defects and Related Properties, Chem. Mater., 21, 1636-1644 (2009).   DOI
54 J. Chen, M. J. Vacchio, S. Wang, N. Chernova, P. Y. Zavalij, and M. S. Whittingham, The hydrothermal synthesis and characterization of olivine and related compounds for electrochemical applications, Solid State Ionics, 178, 1676-1693 (2008).   DOI
55 T. Shiratsuchi, S. Okada, T. Doi, and J. I. Yamaki, Cathodic performance of $LiMn_{1-x}M_xPO_4$ (M = Ti, Mg and Zr) annealed in an inert atmosphere, Electrochim. Acta, 54, 3145-3151 (2009).   DOI
56 V. H. Nguyen, D. H. Lee, S. Y. Baek, H. B. Gu, and Y. H. Kim, Silicon and its effect on the electrochemical properties of $Li_3V_2(PO_4)_3$ cathode material, Ceram. Int., 44, 12504-12510 (2018).   DOI
57 J. He, Y. Wei, T. Zhai, and H. Li, Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries, Mater. Chem. Front., 2, 437-455 (2018).   DOI
58 E. N. Attia, F. M. Hassan, M. Li, R. Batmaz, A. Elkamel, and Z. Chen, Tailoring the chemistry of blend copolymers boosting the electrochemical performance of Si-based anodes for lithium ion batteries, J. Mater. Chem. A, 5, 24159-24167 (2017).   DOI
59 X. Li and C. Wang, Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application, J. Mater. Chem. A, 1, 165-182 (2013).   DOI
60 J. D. Ocon, J. K. Lee, and J. Lee, High energy density germanium anodes for next generation lithium ion batteries, Appl. Chem. Eng., 25, 1-13 (2014).   DOI
61 X. Li and C. Wang, Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application, J. Mater. Chem. A, 1, 165-182 (2013).   DOI
62 M. Chen, L. L. Shao, H. B. Yang, T. Z. Ren, G. Du, and Z. Y. Yuan, Vanadium-doping of $LiFePO_4$/carbon composite cathode materials synthesized with organophosphorus source, Electrochim. Acta, 167, 278-286 (2015).   DOI
63 C. J. Wen, B. A. Boukamp, R. A. Huggisn, and W. Weppner, Thermodynamic and Mass Transport Properties of "LiAl", J. Electrochem. Soc., 126, 2258-2266 (1979).   DOI
64 R. A. Huggins, Advanced Batteries. Materials Science Aspects, Springer US, MA, USA (2009).
65 M. G. Jeong, M. Islam, H. L. Du, Y. S. Lee, H.H. Sun, W. Choi, J. K. Lee, K. Y. Chung, and H. G. Jung, Nitrogen-doped carbon coated porous silicon as high performance anode material for lithium-ion batteries, Electrochim. Acta, 209, 299-307 (2016).   DOI
66 Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka, Tin-based amorphous oxide: A High-capacity lithium-ion-storage material, Science, 276, 1395-1397 (1997).   DOI
67 M. S. Park, G. X. Wang, Y. M. Kang, D. Wexler, S. X. Dou, and H. K. Liu, Preparation and ectrochemical properties of $SnO_2$ nanowires for application in lithium-ion batteries, Angew. Chem., 119, 764-767 (2007).   DOI