• Title/Summary/Keyword: lithium anode

Search Result 464, Processing Time 0.022 seconds

Synthesis and Electrochemical Properties of Carbon Coated Mo6S8 using PVC (PVC를 원료로 탄소코팅한 Mo6S8의 합성 및 전기화학적 특성)

  • Si-Cheol Hyun;Byung-Won Cho;Byung-Ki Na
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.348-355
    • /
    • 2023
  • Magnesium secondary batteries are attracting much attention due to their potential to replace conventionally used lithium ion batteries. Magnesium secondary battery cathode material Mo6S8 were synthesized by molten salt synthesis method and PVC as a carbon materials were added to improve electrochemical properties. Crystal structure, size and surface of the synthesized anode materials were measured through XRD and SEM. Charge-discharge profiles and rate capabilities were measured by battery test system. 2.81 wt% PVC coated sample showed the best rate capabilities of 85.8 mAh/g at 0.125 C-rate, 69.2 mAh/g at 0.5 C-rate, and 60.5 mAh/g at 1 C-rate.

Study on Dust Explosion Characteristics of Acetylene Black (Acetylene Black의 분진폭발 특성 연구)

  • Jae Jun Choi;Dong Myeong Ha
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.2
    • /
    • pp.38-43
    • /
    • 2024
  • Recently, with the expanding market for electronic devices and electric vehicles, secondary battery usage has been on the rise. Lithium-ion batteries are particularly popular due to their fast charging times and lightweight nature compared to other types of batteries. A secondary battery consists of four components: anode, cathode, electrolyte, and separator. Generally, the positive and negative electrode materials of secondary batteries are composed of an active material, a binder, and a conductive material. Acetylene Black (AB) is utilized to enhance conductivity between active material particles or metal dust collectors, preventing the binder from acting as an insulator. However, when recycling waste batteries that have been subject to high usage, there is a risk of fire and explosion accidents, as accurately identifying the characteristics of Acetylene Black dust proves to be challenging. In this study, the lower explosion limit for Acetylene Black dust with an average particle size of 0.042 ㎛ was determined to be 153.64 mg/L using a Hartmann-type dust explosion device. Notably, the dust did not explode at values below 168 mg, rendering the lower explosion limit calculation unfeasible. Analysis of explosion delay times with varying electrode gaps revealed the shortest delay time at 3 mm, with a noticeable increase in delay times for gaps of 4 mm or greater. The findings offer fundamental data for fire and explosion prevention measures in Acetylene Black waste recycling processes via a predictive model for lower explosion limits and ignition delay time.

Utilizing SnO2 Encapsulated within a Freestanding Structure of N-Doped Carbon Nanofibers as the Anode for High-Performance Lithium-Ion Batteries

  • Ying Liu;Jungwon Heo;Dong-Ho Baek;Mingxu Li;Ayeong Bak;Prasanth Raghavan;Jae-Kwang Kim;Jou-Hyeon Ahn
    • Clean Technology
    • /
    • v.30 no.3
    • /
    • pp.258-266
    • /
    • 2024
  • Rechargeable Li-SnO2 batteries suffer from issues such as poor electronic/ionic conductivity and huge volume changes. In order to overcome these inherent limitations, this study designed a cell with a unique hierarchical structure, denoted as SnO2@PCNF. The SnO2@PCNF cell design incorporates in-situ generated SnO2 nanoparticles strategically positioned within N-doped porous carbon nanofibers (PCNF). The in-situ generated SnO2 nanoparticles can alleviate strains during cycling and shorten the pathway for the ions and electrons, improving the utilization of active materials. Moreover, the N-doped PCNF establishes a continuously conductive network to further increase the electrical conductivity and also buffers the significant volume changes that occur during charging and discharging. The resulting SnO2@PCNF cell exhibits outstanding electrochemical performance and stable cycling characteristics. Notably, a reversible capacity of 520 mAh g-1 was achieved after 100 cycles at 70 mA g-1. Even under a higher current density of 1 A g-1, the cell maintained a capacity retention of 393 mAh g-1 after 1,000 cycles. These results highlight the SnO2@PCNF cell's exceptional cycling stability and superior rate capability.

Study on LiFePO4 Composite Cathode Materials to Enhance Thermal Stability of Hybrid Capacitor (하이브리드 커패시터의 열안정성 개선을 위한 LiFePO4 복합양극 소재에 관한 연구)

  • Kwon, Tae-Soon;Park, Ji-Hyun;Kang, Seok-Won;Jeong, Rag-Gyo;Han, Sang-Jin
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.242-246
    • /
    • 2017
  • The application of composite cathode materials including $LiFePO_4$ (lithium iron phosphate) of olivine crystal structure, which has high thermal stability, were investigated as alternatives for hybrid battery-capacitors with a $LiMn_2O_4$ (spinel crystal structure) cathode, which exhibits decreased performance at high temperatures due to Mn-dissolution. However, these composite cathode materials have been shown to have a reduction in capacity by conducting life cycle experiments in which a $LiFePO_4$/activated carbon cell was charged and discharged between 1.0 V and 2.3 V at two temperatures, $25^{\circ}C$ and $60^{\circ}C$, which caused a degradation of the anode due to the lowered voltage in the anode. To avoid the degradation of the anode, composite cathodes of $LiFePO_4/LiMn_2O_4$ (50:50 wt%), $LiFePO_4$/activated carbon (50:50 wt%) and $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ (50:50 wt%) were prepared and the life cycle experiments were conducted on these cells. The composite cathode including $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ of layered crystal structure showed stable voltage behavior. The discharge capacity retention ratio of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ was about twice as high as that of a $LiFePO_4/LiMn_2O_4$ cell at thermal stability experiment for a duration of 1,000 hours charged at 2.3 V and a temperature of $80^{\circ}C$.

The relation of structural transition, thermal and electrical stability deintercalation of Li- CICs(II) : For Li-EaGDICs and Li-EGDICs (Li-CICs의 Deintercalation에 따른 구조변이와 열적, 전기적 안정성과의 관계(II) : Li-EaGDICs와 Li-EGDICs에 관하여)

  • Oh, Won-Chun;Park, Chung-Oh;Back, Dae-Jin;Ko, Young-Shin
    • Analytical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.43-51
    • /
    • 1996
  • We have discussed on the deintercalation process of Li-EaGICs and Li-EGICs synthesized under pressure and temperature by spontaneous oxidation reaction of those compounds based on the results of X-ray diffraction, thermal analysis and electrical specific resistivity analysis. According to the results of the X-ray analysis for the intercalation process, we have found that the stage 1 for Li-EaGICs and Li-EGICs were not completly formed, but their lower stages were formed mainly. And from this results of the deintercalation process, we have found that the deintercalation process did not occur any more after 4 weeks, and the Li-EGDICs have more residual lithium metals than LiEaGDICs between the graphite interlayers. According to the thermal decomposition analysis, Li-two compounds had included very hard exothermic reaction. And we have found that these compounds did not occrurred deintercalation reaction above $400^{\circ}C$. According to the results of the electrical specific resistivity measurements, Li-EGDICs have relatively lower electrical specific resistivity than Li-EaGDICs, and Li-EaGDICs showed a formation of the ideal curve. From these results, we can suggest that Li-EaGDICs have a better properties as an anode material secondary than Li-EGICs.

  • PDF

Properties of Polymer Electrolytes based on PEO-LiClO$_4$ Matrix Fabricated by Sol-Gel Process (솔-젤 법으로 만든 PEO-LiClO$_4$에 기초한 고분자 전해질의 물성)

  • 박영욱;이동성
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.265-270
    • /
    • 2003
  • In spite of high ionic conductivity, the polymer gels have poor mechanical properties and high reactivity with lithium metal anode. To solve these problems, the dry solid systems and polymer composites have been intensively studied, due to their good mechanical, thermal, chemical, and electrochemical stability. The objectives of this experiment were to improve ionic conductivity and mechanical properties of the solid polymer electrolytes based on PEO-LiClO$_4$. To obtain higher ionic conductivity and better mechanical properties, ceramic or rubber phase was added in the PEO-LiClO$_4$(8:1) matrix. The results showed that ionic conductivity and mechanical properties were improved. The ionic conductivity of the samples was as high as 10$\^$-5/ S cm$\^$-1/. This value is similar to the best ionic conductivity ever reported in the solid drying system. To obtain better results, we used PEO with various molecular weights (600∼8000) and changed the salt contents. By using DSC, we found that the addition of salt reduced the crystallinity of PEO. The mobility of polymer dependence on salt contents was examined by FT-IR.

Modeling, Preparation, and Elemental Doping of Li7La3Zr2O12 Garnet-Type Solid Electrolytes: A Review

  • Cao, Shiyu;Song, Shangbin;Xiang, Xing;Hu, Qing;Zhang, Chi;Xia, Ziwen;Xu, Yinghui;Zha, Wenping;Li, Junyang;Gonzale, Paulina Mercedes;Han, Young-Hwan;Chen, Fei
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.111-129
    • /
    • 2019
  • Recently, all-solid-state batteries (ASSBs) have attracted increasing interest owing to their higher energy density and safety. As the core material of ASSBs, the characteristics of the solid electrolyte largely determine the performance of the battery. Thus far, a variety of inorganic solid electrolytes have been studied, including the NASICON-type, LISICON-type, perovskite-type, garnet-type, glassy solid electrolyte, and so on. The garnet Li7La3Zr2O12 (LLZO) solid electrolyte is one of the most promising candidates because of its excellent comprehensively electrochemical performance. Both, experiments and theoretical calculations, show that cubic LLZO has high room-temperature ionic conductivity and good chemical stability while contacting with the lithium anode and most of the cathode materials. In this paper, the crystal structure, Li-ion transport mechanism, preparation method, and element doping of LLZO are introduced in detail based on the research progress in recent years. Then, the development prospects and challenges of LLZO as applied to ASSBs are discussed.

Effect of Vinyl Ethylene Carbonate on Electrochemical Characteristics for Activated Carbon/Li4Ti5O12 Capacitors (활성탄/리튬티탄산화물 커패시터의 전기화학적 특성에 미치는 비닐에틸렌카보네이트의 영향)

  • Kwon, Yong-Kab;Choi, Ho-Suk;Lee, Joong-Kee
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.190-197
    • /
    • 2012
  • We employed the vinyl ethylene carbonate (VEC) as an electrolyte additive and investigated the effect of the electrolyte additive on the electrochemical performance in hybrid capacitor. The activated carbon was adopted as cathode material, and the $Li_4Ti_5O_{12}$ oxide was used as anode material. The electrolyte was prepared with the $LiPF_6$ salt in the mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate(EMC). We evaluated the electrochemical performance of the hybrid capacitor with increasing the amount of the VEC electrolyte additive, which is known as the remover of oxygen functional group and the stabilizer of the electrode by reducing the surface of electrode, and obtained the superior performance data especially at the addition of the VEC electrolyte additive of around 0.7 vol%. On the contrary, the addition of the VEC more than 0.7 vol% in the electrolyte leads to the degradation in electrochemical performance of hybrid capacitor, suggesting the increase of the side reaction from the excessive VEC additive. X-ray photoelectron spectroscopy (XPS) revealed that the addition of the VEC suppressed the formation of LiF component, which is known as the insulator, on the surface of electrode. The optimized addition of VEC exhibited the improved capacity retention around 82.7% whereas the bare capacitors without VEC additive showed the 43.2% of capacity retention after 2500 cycling test.

Electrochemical Characteristics of Li3V2(PO4)3 Negative Electrode as a Function of Crystallinity (결정화도에 따른 Li3V2(PO4)3 음극의 전기화학적 특성)

  • Ku, Jun-Whan;Park, Kyung-Jin;Ryu, Ji-Heon;Oh, Seung-Mo
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.1
    • /
    • pp.27-34
    • /
    • 2012
  • $Li_3V_2(PO_4)_3$/carbon composite materials are synthesized from a sucrose-containing precursor. Amorphous $Li_3V_2(PO_4)_3/C$ (a-LVP/C) and crystalline $Li_3V_2(PO_4)_3/C$ (c-LVP/C) are obtained by calcining at $600^{\circ}C$ and $800^{\circ}C$, respectrively, and electrochemical performance as the negative electrode for lithium secondary batteries is compared for two samples. The a-LVP electrode shows much larger reversible capacity than c-LVP, which is ascribed to the spatial $Li^+$ channels and flexible structure of amorphous material. In addition, this electrode shows an excellent rate capability, which can be accounted for by the facilitated $Li^+$ diffusion through the defect sites. The sloping voltage profile is another advantageous feature for easy SOC (state of charge) estimation.

Effect of $Al^{3+}$ Dopant on the Electrochemical Characteristics Of Spinel-type $Li_{4}Ti_{5}O_{12}$ (스피넬형 $Li_{4}Ti_{5}O_{12}$ 음극물질의 $Al^{3+}$ 첨가에 의한 전기화학적 성능 변화)

  • Jeong, Choong-Hoon;Lee, Eui-Kyung;Bang, Jong-Min;Lee, Bong-Hee;Cho, Byung-Won;Na, Byung-Ki
    • Clean Technology
    • /
    • v.14 no.3
    • /
    • pp.171-175
    • /
    • 2008
  • The effect of the addition of $Al^{3+}$ dopant on the electrochemical characteristics of $Li_{4}Ti_{5}O_{12}$ was investigated. $Li_{4}Ti_{5}O_{12}$ is known as a 2ero-strain material, and $Li_{3.95}Al_{0.15}Ti_{4.9}O_{12}$ has been manufactured by solid-state reaction with high energy ball milling (HEBM). The samples were heated at 800, 900 and $1000^{\circ}C$ in electric furnace. The structural and surface structures were measured by XRD (X-ray diffraction) and SEM (scanning electron microscopy). Cut-off voltage of charge/discharge cycles was $1.0{\sim}3.0 V$ to investigate reversible capacity, cycle stability and plateau voltage. The reversible capacity of $Li_{3.95}Al_{0.15}Ti_{4.9}O_{12}$ was 138 mAh/g.

  • PDF