DOI QR코드

DOI QR Code

Utilizing SnO2 Encapsulated within a Freestanding Structure of N-Doped Carbon Nanofibers as the Anode for High-Performance Lithium-Ion Batteries

  • Ying Liu (Department of Chemical Engineering, Gyeongsang National University) ;
  • Jungwon Heo (Department of Chemical Engineering, Gyeongsang National University) ;
  • Dong-Ho Baek (Department of Chemical Engineering, Gyeongsang National University) ;
  • Mingxu Li (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Ayeong Bak (Department of Chemical Engineering, Gyeongsang National University) ;
  • Prasanth Raghavan (Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology) ;
  • Jae-Kwang Kim (Department of Energy Convergence Engineering, Cheongju University) ;
  • Jou-Hyeon Ahn (Department of Chemical Engineering, Gyeongsang National University)
  • Received : 2024.05.21
  • Accepted : 2024.07.02
  • Published : 2024.09.30

Abstract

Rechargeable Li-SnO2 batteries suffer from issues such as poor electronic/ionic conductivity and huge volume changes. In order to overcome these inherent limitations, this study designed a cell with a unique hierarchical structure, denoted as SnO2@PCNF. The SnO2@PCNF cell design incorporates in-situ generated SnO2 nanoparticles strategically positioned within N-doped porous carbon nanofibers (PCNF). The in-situ generated SnO2 nanoparticles can alleviate strains during cycling and shorten the pathway for the ions and electrons, improving the utilization of active materials. Moreover, the N-doped PCNF establishes a continuously conductive network to further increase the electrical conductivity and also buffers the significant volume changes that occur during charging and discharging. The resulting SnO2@PCNF cell exhibits outstanding electrochemical performance and stable cycling characteristics. Notably, a reversible capacity of 520 mAh g-1 was achieved after 100 cycles at 70 mA g-1. Even under a higher current density of 1 A g-1, the cell maintained a capacity retention of 393 mAh g-1 after 1,000 cycles. These results highlight the SnO2@PCNF cell's exceptional cycling stability and superior rate capability.

Keywords

Acknowledgement

This research was supported by 'regional innovation mega project' program through the Korea Innovation Foundation funded by Ministry of Science and ICT (Project Number: 2023-DD-UP-0026) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00217581).

References

  1. Bernard, P., Alper, J. P., Haon, C., Herlin-Boime, N., and Chandesris, M., "Electrochemical Analysis of Silicon Nanoparticle Lithiation-effect of Crystallinity and Carbon Coating Quantity," J. Power Sources, 435, 226769 (2019).
  2. Autthawong, T., Yodbunork, C., Ratsameetammajak, N., Namsar, O., Chimupala, Y., and Sarakonsri, T., "Enhanced Electrochemical Performance of Sn(SnO2)/TiO2(B) Nanocomposite Anode Materials with Ultrafast Charging and Stable Cycling for High-Performance Lithium-ion Batteries," ACS Appl. Energy Mater., 5, 13829-13842 (2022).
  3. Sun, C. R. and Kim, J. H., "Development of Bismuth Alloy-based Anode Material for Lithium-ion Battery," Clean Technol., 30, 23-27 (2024).
  4. Zhu, Y., Huang, Y., and Wang, M., "Three-dimensional Hierarchical Porous MnCo2O4@MnO2 Network Towards Highly Reversible Lithium Storage by Unique Structure," Chem. Eng. J., 378, 122207 (2019).
  5. Zhang, W., Wang, B., Luo, H., Jin, F., Ruan, T., and Wang, D., "MoO2 Nanobelts Modified with an MOF-derived Carbon Layer for High Performance Lithium-ion Battery Anodes," J. Alloys Compd., 803, 664-670 (2019).
  6. Kim, Y. B. and Park, G. D., "Synthesis of Porous-structured (Ni, Co)Se2-CNT Microsphere and Its Electrochemical Properties as Anode for Sodium-ion Batteries," Clean Technol., 29, 178-184 (2023).
  7. Dai, L., Zhong, X., Zou, J., Fu, B., Su, Y., Ren, C., Wang, J., and Zhong, G., "Highly Ordered SnO2 Nanopillar Array as Binder-free Anodes for Long-life and High-rate Li-ion Batteries," Nanomaterials, 11, 1307 (2021).
  8. Zhou, S., Zhou, H., Zhang, Y., Zhu, K., Zhai, Y., Wei, D., and Zeng, S., "SnO2 Anchored in S and N co-doped Carbon as the Anode for Long-life Lithium-ion Batteries," Nanomaterials, 12, 700 (2022).
  9. Zoller, F., BOhm, D., Bein, T., and Fattakhova-Rohlfing, D., "Tin Oxide Based Nanomaterials and Their Application as Anodes in Lithium-ion Batteries and Beyond," ChemSusChem, 12, 4140-4159 (2019).
  10. Cheng, Y., Wang, S., Zhou, L., Chang, L., Liu, W., Yin, D., Yi, Z., and Wang, L., "SnO2 Quantum Dots: Rational Design to Achieve Highly Reversible Conversion Reaction and Stable Capacities for Lithium and Sodium Storage," Small, 16, 2000681 (2020).
  11. Comini, E., Faglia, G., Sberveglieri, G., Pan, Z., and Wang, Z. L., "Stable and Highly Sensitive Gas Sensors Based on Semiconducting Oxide Nanobelts," Appl. Phys. Lett., 81, 1869-1871 (2002).
  12. Gu, F., Wang, S. F., Lu, M. K., Zhou, G. J., Xu, D., and Yuan, D. R., "Photoluminescence Properties of SnO2 Nanoparticles Synthesized by Sol-gel Method," J. Phys. Chem. B, 108, 8119-8123 (2004).
  13. Wu, P., Du, N., Zhang, H., Zhai, C., and Yang, D., "Self-templating Synthesis of SnO2-Carbon Hybrid Hollow Spheres for Superior Reversible Lithium Ion Storage," ACS Appl. Mater. Interfaces, 3, 1946-1952 (2011).
  14. Spada, D., Bruni, P., Ferrari, S., Albini, B., Galinetto, P., Berbenni, V., Girella, A., Milanese, C., and Bini, M., "Self-supported Fibrous Sn/SnO2@C Nanocomposite as Superior Anode Material for Lithium-ion Batteries," Materials, 15, 919 (2022).
  15. Saddique, J., Shen, H., Ge, J., Huo, X., Rahman, N., Mushtaq, M., Althubeiti, K., and Al-Shehri, H., "Synthesis and Characterization of Sn/SnO2/C Nano-composite Structure: High-performance Negative Electrode for Lithium-ion Batteries," Materials, 15, 2475 (2022).
  16. Liu, Y., Zhao, X., Chauhan, G. S., and Ahn, J. H., "Nanostructured Nitrogen-doped Mesoporous Carbon Derived from Polyacrylonitrile for Advanced Lithium Sulfur Batteries," Appl. Surf. Sci., 380, 151-158 (2016).
  17. Yuan, Y., Chen, Z., Yu, H., Zhang, X., Liu, T., Xia, M., Zheng, R., Shui, M., and Shu, J., "Heteroatom-doped Carbon-based Materials for Lithium and Sodium Ion Batteries," Energy Storage Mater., 32, 65-90 (2020).
  18. Li, Z., Zhang, J. T., Chen, Y. M., Li, J., and Lou, X. W. D., "Pie-like Electrode Design for High-energy Density Lithium-sulfur Batteries," Nat. Commun., 6, 8850 (2015).
  19. Ishita, I. and Singhal, R., "Porous Multi-channel Carbon Nanofiber Electrodes Using Discarded Polystyrene Foam as Sacrificial Material for High-performance Supercapacities," J. Appl. Electrochem., 50, 809-820 (2020).
  20. Heo, J., Liu, Y., Haridas, A. K., Jeon, J., Zhao, X., Cho, K. K., Ahn, H. J., Lee, Y., and Ahn, J. H., "Carbon-Coated Ordered Mesoporous SnO2 Composite Based Anode Material for High Performance Lithium-Ion Batteries," J. Nanosci. Nanotechnol., 18, 6415-6421 (2018).
  21. Ambalkar, A. A., Panmand, R. P., Kawade, U. V., Sethi, Y. A., Naik, S. D., Kulkarni, M. V., Adhyapak, P. V., and Kale, B. B., "Facile Synthesis of SnO2@carbon Nanocomposites for Lithium-ion Batteries," New J. Chem., 44, 3366-3374 (2020).
  22. Wang, Z., Chen, L., Feng, J., Liu, S., Wang, Y., Fan, Q., and Zhao, Y., "In-situ Grown SnO2 Nanospheres on Reduced GO Nanosheets as Advanced Anodes for Lithium-ion Batteries," ChemistryOpen, 8, 712-718 (2019).
  23. Chen, J. S., Cheah, Y. L., Chen, Y. T., Jayaprakash, N., Madhavi, S., Yang, Y. H., and Lou, X. W., "SnO2 Nanoparticles with Controlled Carbon Nanocoating as High-Capacity Anode Materials for Lithium-ion Batteries," J. Phys. Chem. C, 113, 20504-20508 (2009).
  24. Tian, Z., Zhao, J., Li, B., Feng, Y., Song, J., Niu, C., Shao, L., and Zhang, W., "Controllable Synthesis of 3D Porous SnO2/Carbon Towards Enhanced Lithium-ion Batteries," Ionics, 26, 2773-2779 (2020).
  25. Liang, J., Yu, X. Y., Zhou, H., Wu, H. B., Ding, S., and Lou, X. W., "Bowl-like SnO2@carbon Hollow Particles as an Advanced Anode Material for Lithium-ion Batteries," Angew. Chem. Int. Ed., 53, 12803-12807 (2014).
  26. Liu, M., Zhang, S., Dong, H., Chen, X., Gao, S., Sun, Y., Li, W., Xu, J., Chen, L., Yuan, A., and Lu, W., "Nano-SnO2/Carbon Nanotube Hairball Composite as a High-Capacity Anode Material for Lithium Ion Batteries," ACS Sustainable Chem. Eng., 7, 4195-4203 (2019).
  27. Narsimulu, D., Nagaraju, G., Sekhar, S. C., Ramulu, B., and Yu, J. S., "Three-Dimensional Porous SnO2/carbon Cloth Electrodes for High-performance Lithium- and Sodium-ion Batteries," Appl. Surf. Sci., 538, 148033 (2021).
  28. Zhang, B., Zheng, Q. B., Huang, Z. D., Oh, S. W., and Kim, J. K., "SnO2-graphene-carbon Nanotube Mixture for Anode Material with Improved Rate Capacities," Carbon, 49, 4524-4534 (2011).
  29. Chen, T., Pan, L., Liu, X., Yu, K., and Sun, Z., "One-step Synthesis of SnO2-reduced Graphene Oxide-carbon Nanotube Composites via Microwave Assistance for Lithium Ion Batteries," RSC Adv., 2, 11719-11724 (2012).
  30. Zhang, Z., Wang, L., Xiao, J., Xiao, F., and Wang, S., "One-pot Synthesis of Three-Dimensional Graphene/carbon Nanotube/SnO2 Hybrid Architectures with Enhanced Lithium Storage Properties," ACS Appl. Mater. Interfaces, 7, 17963-17968 (2015).
  31. Zhu, X., Zhu, Y., Murali, S., Stoller, M. D., and Ruoff, R. S., "Reduced Graphene Oxide/tin Oxide Composite as an Enhanced Anode Material for Lithium Ion Batteries Prepared by Homogenous Coprecipitation," J. Power Sources, 196, 6473-6477 (2011).
  32. Sahoo, M. and Ramaprabhu, S., "Solar Synthesized Tin Oxide Nanoparticles Dispersed on Graphene Wrapped Carbon Nanotubes as a Li Ion Battery Anode Material with Improved Stability," RSC Adv., 7, 13789-13797 (2017).
  33. Liu, Y., Ju, H. C., Cho, K. K., Ahn, H. J., and Ahn, J. H., "Grape-cluster-like Hierarchical Structure of FeS2 Encapsulated in Graphitic Carbon as Cathode Material for High-rate Lithium Batteries," Appl. Surf. Sci., 630, 157458 (2023).