Browse > Article
http://dx.doi.org/10.5229/JKES.2012.15.3.190

Effect of Vinyl Ethylene Carbonate on Electrochemical Characteristics for Activated Carbon/Li4Ti5O12 Capacitors  

Kwon, Yong-Kab (Center for Energy Convergence, Korea Institute of Science and Technology)
Choi, Ho-Suk (Center for Energy Convergence, Korea Institute of Science and Technology)
Lee, Joong-Kee (Center for Energy Convergence, Korea Institute of Science and Technology)
Publication Information
Journal of the Korean Electrochemical Society / v.15, no.3, 2012 , pp. 190-197 More about this Journal
Abstract
We employed the vinyl ethylene carbonate (VEC) as an electrolyte additive and investigated the effect of the electrolyte additive on the electrochemical performance in hybrid capacitor. The activated carbon was adopted as cathode material, and the $Li_4Ti_5O_{12}$ oxide was used as anode material. The electrolyte was prepared with the $LiPF_6$ salt in the mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate(EMC). We evaluated the electrochemical performance of the hybrid capacitor with increasing the amount of the VEC electrolyte additive, which is known as the remover of oxygen functional group and the stabilizer of the electrode by reducing the surface of electrode, and obtained the superior performance data especially at the addition of the VEC electrolyte additive of around 0.7 vol%. On the contrary, the addition of the VEC more than 0.7 vol% in the electrolyte leads to the degradation in electrochemical performance of hybrid capacitor, suggesting the increase of the side reaction from the excessive VEC additive. X-ray photoelectron spectroscopy (XPS) revealed that the addition of the VEC suppressed the formation of LiF component, which is known as the insulator, on the surface of electrode. The optimized addition of VEC exhibited the improved capacity retention around 82.7% whereas the bare capacitors without VEC additive showed the 43.2% of capacity retention after 2500 cycling test.
Keywords
Vinyl ethylene carbonate; Activated carbon; LTO; Hybrid capacitor; Electrolyte additive;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Yao, Z. Zhang, J. Gao, J. Li, J. Xu, Z. Wang, and Y. Yang, 'Vinyl ethylene sulfite as a new additive in propylene carbonate-based electrolyte for lithium ion batteries' Energy & Environ. Sci., 2, 1102 (2009).   DOI
2 Y. Hu, W, Kong, H, Li, X, Huang, L, Chen, 'Experimental and theoretical studies on reduction mechanism of vinyl ethylene carbonate on graphite anode for lithium ion batteries' Electrochemistry Commu., 6, 126 (2004).   DOI
3 L. Chen, K. Wang, X. Xie, and J. Xie, 'Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries' J. Power Sources, 174, 538 (2007).   DOI
4 A. Schechter, D. Aurbach, and H. Cohen, 'X-ray photoelectron spectroscopy study of surface films formed on Li electrodes freshly prepared in alkyl carbonate solutions' Langmuir, 15, 3334 (1999).   DOI
5 D. Bar-Tow, E. Peled, and L. Bursteinb, 'A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries' J. Electrochem. Soc., 146, 824 (1999).   DOI
6 H. Ota, Y. Sakata, A. Inoue, and S. Yamaguchi, 'Analysis of vinylene carbonate derived SEI layers on graphite anode' J. Electrochem. Soc., 151, 1659 (2004).   DOI
7 A. Bismarck, R. Tahhan, J. Springer, A. Schulz, T. M. Klapijtke, H. Zell, and W. Michaeli, 'Influence of fluorination on the properties of carbon fibres' J. Fluorine Chem., 84, 127 (1997).   DOI   ScienceOn
8 A. M. Andersson and K. Edstrom, 'Chemical composition and morphology of the elevated temperature SEI on graphite' J. Electrochem. Soc., 148, 1100 (2001).   DOI   ScienceOn
9 V. Khomenko, E. Pinero, and F. Beguin, 'High-energy density graphite/AC capacitor in organic electrolyte' J. Power Sources, 177, 643 (2008).   DOI
10 K. Naoi and P. Simon, 'New materials and new configurations for advanced electrochemical capacitors' J. Electrochem. Soc., Interface 17, 34 (2008).
11 M. Inaba, H. Tomiyasu, A. Tasaka, S.-K. Jeong, and Z. Ogumi, 'Atomic force microscopy study on the stability of a surface film formed on a graphite negative electrode at elevated temperatures' Langmuir, 20, 1348 (2004).   DOI
12 M. Masatoshi, U. Satoshi, Y. Eriko, K. Keiji, and I. Shinji, 'Development of long life lithium ion battery for power storage' J. Power Sources, 101, 53 (2001).   DOI
13 N. Kiyoshi, N. Ryosuke, M. Tomoko, and M. Hiroshi, 'Preparation of particulate $Li_{4}Ti_{5}O_{12}$ having excellent characteristics as an electrode active material for power storage cells' J. Power Sources, 117, 131 (2003).   DOI
14 S. S. Zhang, K. Xu, and T. R. Jow, 'EIS study on the formation of solid electrolyte interface in Li-ion battery' Electrochim. Acta, 51, 1636 (2006).   DOI   ScienceOn
15 H. Schranzhofer, J. Bugajski, H. J. Santner, C. Korepp, K.-C. Moller, J. O. Besenhard, M. Winter, and W. Sitte, 'Electrochemical impedance spectroscopy study of the SEI formation on graphite and metal electrodes' J. Power Soureces, 153, 391 (2006).   DOI
16 M. Winter and R. J. Brodd, 'What are batteries, fuel cells, and supercapacitors?" Chem. Rev., 104, 4245 (2004).   DOI   ScienceOn
17 S. S. Zhang, K. Xu, and T. R. Jow, 'Optimization of the forming conditions of the solid-state interface in the Liion batteries' J. Power Soureces, 130, 281 (2004).   DOI
18 Y. Fu, C. Chen, C. Qiu, and X. Ma, 'Vinyl ethylene carbonate as an additive to ionic liquid electrolyte for lithium ion batteries' J. Appl Electrochem, 39, 2597 (2009).   DOI
19 J. Shim, R. Kostecki, T. Richardson, X. Song, and K. A. Striebel, 'Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature' J. Power Sources, 112, 222 (2002).   DOI
20 A. Burke, 'R&D considerations for the performance and application of electrochemical capacitors' Electrochim. Acta, 53, 1083 (2007).   DOI
21 G. G. Amatucci, F. Badway, A. D. Pasquier, and T. Zheng, 'An asymmetric hybrid nonaqueous energy storage cell' J. Electrochem. Soc., 148, 930 (2001).   DOI
22 A. D. Pasquier, I. Plitz, S. Menocal, and G. Amatucci, 'A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications' J. Power Sources, 115, 171 (2003).   DOI   ScienceOn
23 J. R. Dahn and J. A. Seel, 'Energy and capacity projections for practical dual-graphite cells' J. Electrochem. Soc., 147, 899 (2000).   DOI
24 A. Yoshino, T. Tsubata, M. Shimoyamada, H. Satake, Y. Okano, S. Mori, and S. Yata, 'Development of a lithium-type advanced energy storage device' J. Electrochem. Soc., 151, 2180 (2004).   DOI
25 T. OHZUKU, A. Ueda, M. Nagayama, Y. Iwakcihi, and H. Komori, 'Comparative study of Li$CoO_{2}$, $LiNi_{1/2}Co_{1}/_{2}O_{2}$ and $LiNiO_{2}$ for 4 volt secondary lithium cells' Electrochimica Acta., 38, 1159 (1993).   DOI   ScienceOn
26 T. Aida, I. Murayama, K. Yamada, M. Morita, 'Analyses of capacity loss and improvement of cycle performance for a high-voltage hybrid electrochemical capacitor' J. Electrochem. Soc., 154, 798 (2007).
27 S.-W.Woo, K. Dokko, H. Nakano, and K. Kanamura, 'Bimodal porous carbon as a negative electrode material for lithium-ion capacitors' Electrochemistry, 75, 635 (2007).   DOI
28 N. Ogihara, Y. Igarashi, A. Kamakura, K. Naoi, Y. Kusachi, and K. Utsugi, 'Disordered carbon negative electrode for electrochemical capacitors and high-rate batteries' Electrochim. Acta, 52, 1713 (2006).   DOI
29 E. F. Camacho, T. Samad, M. Garcia-Sanz, and I. Hiskens, 'Control for renewable energy and smart grids' The Impact of Control Technology, Control Systems Soc., 69 (2011).
30 C. A. Nogueira and F. Delmas, 'New flowsheet for the recovery of cadmium, cobalt and nickel from spent Ni- Cd batteries by solvent extraction' Hydrometallurgy, 52, 267 (1999).   DOI
31 J.-M. Tarascon, A. S. Gozdz, C. Schmutz, F. Shokoohi, and P. C. Warren, 'Performance of Bellcore's plastic rechargeable Li-ion batteries' Solid State tonics, 86, 49 (1996).   DOI   ScienceOn